PHYSICAL REVIEW E VOLUME 62, NUMBER 1 JULY 2000

Structural properties of the sliding columnar phase in layered liquid crystalline systems
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Under appropriate conditions, mixtures of cationic and neutral lipids and DNA in water condense into
complexes in which DNA strands form local two-dimensio(®D) smectic lattices intercalated between lipid
bilayer membranes in a lamellar stack. These lamellar DNA-cationic-lipid complexes can in principle exhibit
a variety of equilibrium phases, including a columnar phase in which parallel DNA strands form a 2D lattice,

a nematic lamellar phase in which DNA strands align along a common direction but exhibit no long-range
positional order, and a possible new intermediate phase, the sliding cold8®aphase, characterized by a
vanishing shear modulus for relative displacement of DNA lattices but a nonvanishing modulus for compress-
ing these lattices. We develop a model capable of describing all phases and transitions among them and use it
to calculate structural properties of the sliding columnar phase. We calculate displacement and density corre-
lation functions and x-ray scattering intensities in this phase and show, in particular, that density correlations
within a layer have an unusual exptonstx In’r) dependence on separatinniWe investigate the stability of

the SC phase with respect to shear couplings leading to the columnar phase and dislocation unbinding leading
to the lamellar nematic phase. For models with interactions only between nearest neighbor planes, we conclude
that the SC phase is not thermodynamically stable. Correlation functions in the nematic lamellar phase,
however, exhibit SC behavior over a range of length scales.

PACS numbse(s): 87.15-v, 61.30.Jf, 61.30.Cz, 64.70.Md

I. INTRODUCTION fined to a two-dimensional plane tend to form locally aligned

The search for nonviral vectors for transport of DNA structures with a preferred intermolecular separation that can
across cell and nuclear membranes in gene therapy has ledble modeled as two-dimensional smectic liquid crystals
the study of DNA-cationic-lipid complexegl]. DNA and  [8-10. Thus lamellar DNA-lipid complexes can be viewed
mixtures of neutral(zwitterionic and cationic lipids dis- as a three-dimensionéD) stack of 2D smectics as depicted
persed in water self-assemble into spheroidal complexes thét Fig. 1. This figure establishes the coordinate conventions
can attain micron sizes near the isoelectric point, where theréhat will be used throughout this paper. DNA strands align
is compensation between DNA and lipid charge. Fluoreson average along thedirection, and the normal to lamellae
cence tagging of DNA and lipids indicaf&] that both spe- is along they axis. The normal to the 2D smectic lattices is
cies are dispersed uniformly throughout the complexesalong thez direction. The average spacing between lamellae
X-ray scattering experiments reveal two bulk structures
[2-5] for complexes with close association between DNA
and lipids. When helper lipids that favor spontaneous curva-
ture of lipid membranes or that decrease membrane charge
density are added, a hexagonal inverted micellar structure
forms with DNA molecules captured in the water holes of
the hexagonal lattic¢5]. When only neutral and cationic
lipids are used, DNA is intercalated in galleries between

lamellae of a lamellar lyotropic phase formed by the lipids ',:;.0
[2-4)], as depicted schematically in Fig. 1. This paper will W%‘m
investigate the possible equilibrium phases of these lamellar e né’cifil'n;‘.

DNA lipid complexes. It will focus primarily on the proper-
ties of one phase, the sliding columnar phf&&], charac-
terized by strong orientational but weak positional correla-
tion between DNA strands in neighboring galleries.

DNA molecules are semiflexible polymers that when con- e

FIG. 1. Schematic representation of lamellar DNA-cationic-lipid

] o ~ complexes. Parallel strands of DNA form 2D smectic lattices with

*On leave from the Department of Physics, West Virginia Uni- |attice spacingd in galleries between flat lipid bilayer membranes
versity, Morgantown, WV 26506-6315. Electronic address:with spacinga. DNA strands are aligned parallel to theaxis, and

Igolub@larry.wvnet.edu they axis is normal to the lipid planes. The height of the midpoint
TPresent address: Department of Chemistry and Biochemistryof the nth membrane above a point=(X,z) in the xz plane is
UCLA, Los Angeles, CA 90095-1569. Electronic address:Hj .(r). Thenth DNA gallery with heightHPA(r) lies between

ohern@chem.ucla.edu the nth and the 6+ 1)st membranégsee Eqs(2.1) and(2.2)].
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FIG. 2. Schematic representation of structdi@) and x-ray scattering profilegottom of (a) the columnar phasdp) the sliding
columnar phase, antt) the nematic lamellar phase. These figures assume that the preferred low-temperature phase is the centered-
rectangular columnar phase. Modifications for a rectangular columnar phase are obvious. The indexing scheme for the x-ray intensities is the
standard one for a centered rectangular lattice. There are Bragg peaks in the columnar @rag@ratko/2,m,q,) [denoted in the figure
as (m;,m,), wherem; +m, is even. In the columnar phase, DNA strands form a 2D lattice with true long-range order and associated x-ray
Bragg peaks. In the sliding columnar and nematic lamellar phases, there are power-law quasi-Bragg peak®)aa(d diffuse peaks at
(my,my) for m; # 0. Dislocations destroy 2D smecticlike order in the nematic lamellar phase to produce more diffys® ) peaks than
in the sliding columnar phase. If interlayer couplings are weak and thermal fluctuations sufficiently strongntilg peaks may merge to
produce a diffuse peak centered at the rectangular-ld@lide position in the sliding columnar and nematic lamellar phases. The labeling of
peaks in this figure, which follows conventional,{,z) ordering for the our choice of axes, is the inverse of that of Réf.Thus (m;,m,)
[e.g., (£1,1)] here corresponds tar(,,m;) [e.g., (1;+1)] in Ref.[4].

is a, and that between DNA strandsdsThe wave numbers  =[0,m;k,/2,m,q,]=(m;,m,), wherem; andm, are inte-
associated with these lengths are, respectiviely; 2m/a  gers andm, is even for a simple rectangular lattice amg
andqy=2/d. +m, is even for a centered rectangular lattice as shown in
If the lamellae are assumed not to be disrupted by disloFig. 2.
cations or rips, then the following possible equilibrium  Nematic lamellar (NL) phasdn this phase, the periodic
phases are easily identified: positional order of the columnar phase is destroyed by dis-
Columnar (C) phaseln this phase, DNA strands are locations in the DNA smectic lattices, but the long-range
a_|igned on average a|ong teaxis, and their centers occupy _orientational_ order of DNA strands is maintai_ned. This phase
positions on a 2D crystal lattice in thez plane. Since the s characterized by a long-wavelength elastic energy with a
standard Coulomb repulsion between DNA strands favorémellar compression modulus, an anisotropic lamellar bend-
staggering of smectic lattices in neighboring galleries, thd"d modulus, and orientational rigiditig&rank elastic con-
columnar lattice is normally expected to be centered rectarst@nts 0pposing spatially dependent variation of DNA align-

gular as observed in experiments on complexes in whiclii:?enlt dlrectlton].c DBNO,th ;[the s_heg_rff mo?ulu?l for relt?ttl\ée
membranes are in thieg, phase rather than the more disor- ISplacement o attices In ditterent galieries an e

deredL, phasd4]. We will, however, consider both simple compression modulus for DNA lattices vanish, and there is

¢ | d tered ¢ | | latti /gxponential decay of DNA positional correlations. The x-ray
rectanguiar and centered rectanguiar columnar: iatlices. cattering profile of the NL phase exhibits lamellar power-

simple rectangular lattice may occur if the effective interac-|aW (21,0) peaks abG, = (0,ko,0). If columnar-phase po-
tion between DNA strands idifferentgalleries is attractive, gjional correlations are well developed, it will also exhibit

as is the case between DNA strands in solutions with poly; grentzian peaks aﬁml,mz for m,#0, as depicted in Fig. 2.

valent salt§11]. The columnar phase is favored at low tem- If thermal fluctuations are sufficiently strong that these cor-

pergture. It has the same symmetry as a columnar d'SFOt lations are not well developed in centered rectangular sys-
liquid crystal phasélZ]_. 't. is characterized by a 2D e_Iastu; tems, then the x-ray scattering profile could exhibit a broad
energy with a nonvams_hlng_ sh<_ear modulus for relative dIS-(0,1) peak in the vicinity of (0,ay,) rather than the expected
placements of DNA lattices in different galleries and noNVa-pair of (1,1) and (— 1,1) peaks. In this case, the positions of
nishing moduli for compression of both lamellae and DNAthe x-ray scattering peaks would appear to indicate a ten-
smectic lattices. It has long-range positional order ingency to form a simple rectangular rather than the ground-
the 2D yz plane and associated Bragg peaks in its X-raystate centered rectangular structure.

scattering profile at reciprocal-lattice vector&, m, Isotropic lamellar (IL) phaseln this phase, orientational
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as well as positional order of DNA lattices is lost. Macro- tions for the SC phase, including x-ray scattering intensities.
scopically this phase is identical to a multicomponent isotro-Section |V addresses the stability of the SC phase. It calcu-
pic lamellar phase. It is included for completeness, and willates Ty, and it derives general expressions for the interac-
not be considered further in this paper. tion between dislocations before calculatifigy . Section V

Decoupled 2D smectic (DS) phas€his phase occurs presents a discussion of the various important length scales.
only if there are absolutely no interactions between DNAFinally, Sec. VI provides an overview of results. Appendix A
lattices in neighboring galleries. Its elasticity and correla-Presents details of the derivation of the Hamiltonians in Sec.
tions are thus those of independent 2D smectic lattices. Sindé Appendixes B—F provide details of the calculations of
there are always interactions between galleries, this phad@rious SC phase correlations functions, and Appendix G
will not exist in real systems. It is, however, a useful limit to Presents details of calculations of interactions between dislo-
consider since systems with weak coupling between layergations.
will behave as though they are decoupled at sufficiently short
length scales. IIl. MODEL FOR LAMELLAR PHASES OF DNA-LIPID

In addition to the above phases, which are straightforward COMPLEXES
to identify, there is the possibility of another phase with un-
usual properties.

Sliding columnar (SC) phadé,7]. This phase has prop- As depicted in Fig. 1, lamellar phases of DNA-lipid com-
erties intermediate between those of the columnar and lameplexes consist of a periodic stack of planar lipid bilayer
lar nematic phases. Its elastic energy is distinguished froormembranes with spacirgseparated by galleries intercalated
that of the NL phase by the presence of a nonvanishingvith DNA strands that form a local 2D smectic lattice with
modulus for compression of DNA lattices. In-plane smecticpreferred spacingl. Since our primary interest is in the na-
correlations die off as exp(consixIn?r) as a function of ture of possible ordering of the DNA strands, we will assume
separationr rather than exponentially as in the NL phase.that the lipid membranes are free of defects such as disloca-
Correlations between smectic lattices in different galleriedions or focal conic structures that destroy their integrity. We
die off exponentially with layer-number difference. The can, therefore, specify a layer by its integer layer nunther
x-ray structure factor exhibits power-law lamellar1g3,0)  and we can specify positions in the plane by the vector
peaks and well defined DNAn{;,m,) peaks withm,+ 0 r=(x,z). We take the equilibrium height of the midpoint of
that are sharper than the corresponding Lorentzian peaks bilayer membranen be na. The height of membrana at
the NL phase, as depicted in Fig. 2. As in the NL phasg) positionr is then
and (—1,1) peaks may merge to produce a sin@d) DNA N |
peak if thermal fluctuations are sufficiently strong. Hien( 1) =na+h"(r), 2.1

Rather stringent conditions must be met before the SC o ) , )
phase can be thermodynamically stable. Thermal fluctuation&hereh”(r) is the Lagrangian height variablé5] measur-
must be strong enough to destroy the interlayer shear cod?d the displacement of layerfrom its ideal height. Theth
pling present in the columnar phase but not so strong thdpNA lattice lies between memlbranesan_dn+;. Its equi-
dislocation proliferation destroys the smectic compressibilitylibrium height is, therefore,r(+2)a, and its height at posi-
to create a nematic lamellar phase. The SC phase is stadlénr IS
only for temperature§ lying above a decoupling tempera- N . N
ture T, at which the C phase becomes unstable and below a pna(M)=(n+3z)a+uy(r), 2.2
Kosterlitz-Thouless(KT) melting temperaturel above N o . _
which the NL phase becomes stable. Thus a necessary col€reuy(r) measure deviations from equilibrium height.
dition for the SC phase to be stableTig<Tyr. In Sec. IV, The DNA lattice in layem can be described in terms of a
we will show that this condition is violated for the nearest Fourier expansion of its density. It is important to keep track
neighbor models we consider here. Elsewhgr,14], we of the relat_lve phases of mas_s—densny waves in adj_acent lay-
show that appropriately chosen interactions between furthed's. In an ideal columnar lattice, the phase of the first mass-

A. Definition of variables

neighbor planes can stabilize the SC phase. density wave in layen is simply go(z—2"), where
The focus of the paper is the rather unusual properties of
the SC phase. We will, therefore, assume throughout most of Qo=2/d, 2.3

the paper that the SC phase does exist. This approach is . » . o
justified because it can under appropriate conditions be aﬂndz_ specifies the preferred posritlon of Iatt_lces in different
equilibrium phase as discussed in Hédf3] and because even galleries. In a rectangular lattice!=0, and in a centered

if it is not thermodynamically stable, there is a range off€ctangular latticez"=nd/2. Phase changes at position
length scales over which correlations functions will exhibit'€lative to the above ideal phases are produced by local
SC behavior. translations described by the Eulerian displacement variable

This paper is composed of six sections, of which this isuz(r). Thus the DNA density-wave expansion in layeis
the first, and seven appendixes, which mostly present math-
ematical details. Section Il derives the Hamiltonians for the n _ nk( -\ mikaolz—z"—u(r)]

- : ry= rye' o 2\ 2.4

columnar, sliding columnar, and nematic lamellar phases, Pona(r) Zk ) 24
based on a model in which the dominant interactions are
couplings between each DNA lattice and the two membranel§ each DNA lattice is perfect with identical rods of linear
on either side of it. Section IIl presents the correlation func-density\ and separatiod, thenp"(r)=\/d for everyn and
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k. Thermal fluctuations will lead to reductions gfi* that are
larger for largerk. Thusppya(X) can be approximated by

PONAX) = pot lﬂeiqo[zfznfug(r)] +c.c.,

(2.9

where ¢, assumed to be independent myfis the complex
amplitude of the first nontrivial density wave.
The total mass density of DNA strands at positions

=(x,y,2)=(r,2) is
PoNa(X) = % Pnk(r)eikqo[z_zn_ug(r)]flE)NA

X[y—(n+z)a—ug(r)], (2.6)
wherefKA(y) is the form factor along the layer normal for
a DNA mass-density wave of wave numlibey,. If the DNA
stands are lines with no width, thiégNA(y)zé(y). If the
strands are modeled as cylinders of radigg,, then the
Fourier transform of Ky (y) is [3]

231(\/q32,+k2qg " bna)
qu+k2% fona

(2.7

fIE)NA(Qy) =
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by a modulusB;4. Changing the distance between mem-
branes on either side of a DNA layer will lead to an expan-
sion or a compression of its DNA smectic lattice, which is
described by a coupling with strengly,,, between in-plane
strain and membrane separation. Combining all of these ef-
fects into a single compression energy, we obtain

=S a [ (3Bl ul)+ (Bl )
n

+(Bgg/@®)[(h™ 1 =up)®+(uy—h"2]}, (210

where

(2.11

is the nonlinear 2D Eulerian strain and where factora of
were introduced to facilitate the continuum limit, e.g.,
(h”*l—h”)/a~ayh(x). There are additional compressional
energies involving interactions proportional toh"¢?!
—h™2, (uy™t—uf)?, (u}; *—uj)? and other further neigh-

Uz,= dU7 — [ (dyu3)?+ (9,u3)?]/2

o4
bor terms. These are smaller than those considered in Eq.

(2.10, and we will neglect them. They are, however, needed
to achieveT4<Tt and a stable SC pha$&3].
Neighboring DNA strands within a gallery prefer to be

whereJ; (x) is the Bessel function of order 1. The membraneparallel. This leads to a Frank-like orientational energy

density is

pmen{x>=; pLfmenly—na—h"(r)], (2.9

wherepE is the area density of the lipid, arfd,e.(Y) is the
lipid membrane form factor, which typically is equal tonl/
for —w/2<y<w/2 wherew is the membrane width. X-ray
scattering experiments prole(q)p(—q)), wherep(q) is
the Fourier transform of a linear combination@fya(x) and
Pmen(X) [see Sec. Il D.

B. Hamiltonian for coupled DNA-lipid layers

We are now in a position to derive the Hamiltonian de-
scribing elastic fluctuations of lamellar DNA-lipid com-

plexes. Our goal is to develop the simplest model consistenf.

with symmetry. We begin with individual membranes and

DNA layers. They are characterized by layer bending ener-

gies, which can be expressed as

Jbend_ 13" af d?r{Ksq4[ (324 92)h")?
n

n

D2+ (aZud)?1},

whereaKsq= kmemiS the bending rigidity of the lipid mem-
branes, anédK,4= kpna iS the bending rigidity of an indi-

+ Kool (d2u (2.9

vidual DNA strand. We adopt a convention here with a fac-where K ,~4aVv’e”

tor of the layer spacinga multiplying sums overn to
facilitate the continuum limit=afd?r— [d3x. Interactions

o= af d?rk ,(,6")?, (212

n
where 6"(r)~a,ul(r) is the angle that thath DNA lattice
at r makes with thex axis. In all but the NL phase, this
orientational interaction is subdominant to those in @),
and we will ignore it.

Finally, there are interactions between DNA lattices in
neighboring galleries that favor parallel alignment and spa-
tial registry of the lattices. These interactions are described
by a sum of layer-coupling Hamiltonians

HIM=2 (Mot Hy). 213
n
he angular coupling is
H,?:—vﬂf d?r cog2(6"— 6" 1)]. (214

In all but the isotropic lamellar phase, there is long-range
angular order, and we can repla&gH ! by

HoO=3K, > af dzr(
n

4((0M?)

aultt—g.un\?
—a | (2.19
The interactionH, in Eq.
(2.13, favoring spatial registry, arises from interactions be-
tween DNA densities in Eq(2.5. The phasegyz" [Eq.

between DNA strands lead to a preferred separation betwedg-4)] are chosen so that energy is minimized when the re-
strands within a layer and to a compressional elastic energynaining phaseB"(r) =qo[ z—uy(r)], of mass-density waves

characterized by a modulu,,, for changing this separa-

tion. There is also a preferred separation between a giveapproach of the lattice@Fig. 3). The point atr
Nn+1 closest to the point at” in layern lies along the nor-

DNA layer and the two lipid membranes above and below it

in neighboring DNA lattices are equal at the points of closest
"*1in layer

Harmonic deviations from this separation are characterizedal N“(r)m(—axu’y‘,l,— azu;). Thus r""l=rn4 s+l
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n+2
HSC= %; aJ d?r[Bag(u3,)?+ Kaa( d5u5)?]
+3> af d?r[(Bgq/a?) (uy "~ up)?
n

+K“5(&a(95u§)2]+%§: aJ d’r[—B,,
n

X[(uly 1= ul)/al?+2(Byp/a)ulul - ul b

1 2 n+1 n 2
— 1> a| drK,[(ult—a,uM/al?, 2.19
FIG. 3. A sequence of tilted and bent membranes. Interactions 4 f (9 «Uz)/a] 219

favor equality of the shifted phasg}'(r) =qq[z—u,(r)], in neigh-
boring layers at points of closest approach, i.e., they f@/r") where
=" ("t Yy wherer"t1—r"=aN, (r"), whereN, is the projec-

2
tion of the membrane layer normal onto the plane. Bun
B,,= , (2.20
4By
n+1__ ~( _ n _ n i . . .
where5r™"“=aN, ~(—aduy,0,~aduy) whereN, isthe o g ymmation convention am=x,z and 8=x,z is under-

projection ofN onto thexz plane. Energy is minimized when
B (" Y =qo(z—aduy—uy ") is equal top"(r"). The
resulting energy is

stood, and the bending-rigidity tensor is

Kag Kag

Kaﬁ:( KZX KZZ

). (2.2))

ng_VuJ' d2r cogdgo(ul* - ul+ad,ul)], (2.16 Note that integrating ouh" creates interactions nbet\_/veen
nearest-neighbor and next-nearest-neighidbrand uy dis-

placements not present in the original model of Ef17).

These interactions, however, have particular ratios deter-

. - ; :
density-wave amplitude. As required, this energy is invarianfmn.ed bhy thfe”paramet(;rs fm d Ofl pgrﬂcutl)ar mport:;nce toff.
with respect to spatially uniform translations described by art'S " Wfatnglowi IS the fixe nrezatlonds between the coefl-
n- andr-independent displacement a(r). It is also invari-  C1€Nts of &, ™" —uy)*, (uz, “—uz)", anduzu, "~ u, ).

y . . Ly
ant to harmonic order with respect to uniform rotations, in/n & more general model with further-neighbor interactions,
n+tl_  n

which u uy=—ad,uy . The predominant interaction be- the simple relation of Eq2.2Q amongBy,, Byn, andByg
Y would not hold.

tween DNA in neighboring strands is electrostatic, and we Using % we can construct the long-wavelength
xpectV'~(\2/d)e 2724 where), is the char r uni > "9 "TDNA> : gt .
expect (Ae/d)e » Whereh. Is the charge per unit Hamiltonian for each of the phases listed in the introduction

length on a DNA strand. as detailed in the followin
To summarize, our complete model Hamiltonian coupling 9-

membrane height displacemerttS and DNA lattice dis-
placementsly anduj is thus

where V! is proportional to the squargy|? of the mass-

2. Columnar phase

The columnar crystal is characterized by a strong cou-
pling of displacements in different layers. Its elastic Hamil-
H 1Ot= 7 bendy. g comy gy int (2.17  tonian can be obtained by expanding the cosing(h[Eq.
(2.16)] about one of its minima. Performing this operation,
taking the continuum limit, and retaining only the lowest
order terms in a gradient expansion, we obtain the familiar
elastic Hamiltonian for a rectangular columnar lattjdéé:

with entries defined by Eq$2.9), (2.10, and(2.13—(2.16).

1. Effective Hamiltonian for DNA displacements

Though we will discuss membrane height fluctuations, HC=%f d3X[ BogUZ,+ BagUzy + Bunl, Ay, + By,u7,]
our primary focus will be on properties of the DNA lattices.
It is, therefore, useful to integrate out the membrane height
variablesh"(r) to obtain an effective Hamiltonian for DNA +f ABX[Kpa(95U,) 2+ (K g+ Ksg) (d5uy)?],
displacements only. This operation is carried out in Appen-
dix A. The long wavelength result is (2.22

where x=(r,na), u,(x)=ul;¥%(r), and B,,~V'qgja’.
. . u
HI = H SC+ A (2.18 !\Iote that the suhgar elastic modulBg, arises fro_rrTHn and
is zero whenV" is zero. The cross compressi@y, term
arises from theu}(u)™*—up) term in Hgy,, which was
where H'=3 H1 and HSC is the sliding phase Hamil- generated by the interaction of, with the membrane height

tonian, field h".
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3. Sliding columnar phase Note that there is no term proportional taf{ *—ul,)? in

The sliding columnar phase is characterized by a vanishHamiltonian 3%, even though there is one i °C. This is
ing shear modulu8,, for the relative displacement of DNA a result of the special relatiofEq. (2.20] among energy
lattices. Its dominant fluctuations are, therefore, described bgoefficients inF ==,

the Hamiltonian™ € of Eq. (2.19 obtained by setting/" The Hamiltonian of Eq(3.1) is the sum of two parts: a
=0 inH, . TheV" coupling is irrelevant when the sliding SUm of elastic energies for independent 2D smediis.
phase is stable as detailed in the followjsge Sec. IV. (3.13] and a term coupling angles in neighboring layés.
(3.1b]. The 2D smectic energy is a function of the full non-
4. Nematic lamellar phase linear strainu},. When Ky=0 and there is no coupling be-

- . . tween layers, nonlinearities in), lead to important renor-
Positional couplings between layers and the smectic com- Y 2z P

pression moduluB,4 both vanish in the nematic lamellar malizqtions of the Iong-\_/vavelength elastic constant of a 2D
phase, and 2d smectic[10]. When the interlayer coupling term is present,

nonlinearities inu}, also lead to long wavelength renormal-
ization of elastic constants in the SC phgk€|. These renor-

HNL=%f A3X[ K (9 0) 2+ Ky (9, 0)%+ K (3,0)?] malizations are only logarithmic, however, and we will ig-
nore them in this paper.

. 2 ap ) We, therefore, consider the harmonic limit&£©, which
+2 | dX[Baglyy + K™ (dadaly)], (223 s conveniently expressed in Fourier space. Introducing
whereK,=K,4 andK, is a Frank elastic constant introduced d’q f”’a %[Ax qufAz dg, (33
n Eq- (2-12- (277)3 B —7-r/a277 _Ax27T _A227T ' '
lIl. CORRELATIONS IN THE SLIDING COLUMNAR whereA, and A ,~2x/d are wave number cutoffs, and
PHASE
3
In Sec. Il, we derived a general Hamiltonian capable of ul(r)= f ﬂgei(qynw%r)uz(q), (3.4
describing the phases of lamellar DNA-lipid complexes. In (2m)

this section, we will investigate correlations in the sliding _
columnar phase. The most unusual correlations in the sliding/herea, =(dy,0.,), we obtain
columnar phase are those involving displacements of DNA

Ly . . . . . 3
strands within the layers. We will thus begin by considering SC_EJ d°q 2 4 2 2 P
the effective Hamiltonian fou! obtained by integrating out Hz 2 (277)3[qu+qu+Ky(qy)qqu]|uZ(Q)| ’
uy from #5¢ [Eq. (2.19]. From this we will calculate all (3.9

correlation functions ofi; . We will then consider membrane
height correlations described by an effective Hamiltonian foriere

h™ in which uy andu} have been integrated out &' [Eq. B

(2.17)]. In the long-wavelength limit fluctuations i} are Ky(ay) =Kyp(aya), (3.6
the same as those in". Finally, we will discuss the rel-

evancy of the shear coupling' [Eq. (2.16)]. This involves a with
consideration of bothi} andd,uy .
y (1—cosgya)
p(aya) = Zﬁz—, (3.7
A. Correlations in u} Ay
1. Effective Hamiltonian for U} which tends to unity ag,a—0 so thatk(q,=0)=K, .
tot Two important length scales can be obtained from Eq.

Sinceuy anduj are harmonically coupled ifi(py, , we
can integrate oveug exactly to obtain an effective Hamil-
tonian foru} fluctuations alone. This calculation is carried
out in Appendix A. In the long-wavelength limit, the result-
ing Hamiltonian is

(3.1 by comparing the orientational interaction energy with
the 2D smectic compression and bending energies. The
length scales

a2
x*=— and z*=——, (3.8
SC_1 2 ny2 2, 2 Hy HyN
-1 a driBL KA (319
" with u,= VK, /K and A= K/B, separate two-dimensional
K from three-dimensional behavior. At length scales within a
+ [ (ul—ul" 117 (3.1p  gallery less thax* andz*, the 2D compression and bending
a energies are large compared to the orientational interaction,
and the DNA lattices behave like independent 2D smectics.
whereK=Kq and On the other hand, at length scales greater tfamand z*,
) the orientational interaction is significant, and 3D sliding be-
B=B3q— (Byn/Bsa)- (32 havior occurs.
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Before proceeding to discuss the sliding phase correla- ) o 01 d3q .
tions, we note that the sliding phase elastic free energy in Eq?(r)=3([u2(r)—u2(0)]% = j WGzz(Q)(l—e'qi'r).

(3.1) exhibits a strikindocal (gauge translational invariance (3.16
of the form '
g®(r,na)=—([u3(0)—u(0)J[uz(r) —u3(0)])
U,(X,z,na)—u,(X,z,na)+f(n); (3.9 .
d°q :

= — —elar
here the displacemefi{n) is anarbitrary function ofn as- f (277)§GZZ(q)><(1 cosqyna)(1—e).
suming a different value in each gallery. In other words, the (3.17)
DNA lattices in different galleries can continuously slide '

relative to each other by arbitrary distances with no elastigt js clear thatg(*)(na)=g(0,na) andg‘®(r)=g(r,0). Each
energy costs. In a standard columnar phase, this continuogs these functions has a characteristic singular behavior as a
symmetry is spontaneously broken down by the shear coyynction of system size and separation, which we will sum-

pling in Eq. (2.16. On the other hand, in the sliding phase, marize below. Finally, the function
this shear coupling is irrelevant at long scales, and elastic

properties reflect the gauge symmetry in B219). This sym- g@(r,na)=9g@(r)—g®(r,na) (3.18
metry is entirely responsible for the unconventional fluctua- ] o ] )
tion behavior of the sliding phase we discuss in the follow-Will appear in our derivation in Appendix F of interplane
ing. In particular, we find that in the sliding phase, thedensity correlations discussed in Sec. Il D.
fluctuations of relative displacements)™*(r)—ul(r) of
DNA lattices in neighboring galleries diverge in the thermo-
dynamic limit. As a reflection of the gauge symmetry Eq.  The local fluctuation((u})?) in the SC phase diverges as
(3.9, a DNA lattice in a gallery is essentially free to flow the squareof the log of the system size with a functional
relative to DNA lattices in neighboring galleries. The sliding form that depends on the order in which the sample dimen-
phase thus exhibits zero macroscopic shear mod6ld sionsL,, Ly, andL, along thex, y, and z directions ap-
proach infinity:

3. Asymptotic forms for K#0

2. Definitions of correlation functions

IN?[8L,/x*], L,>L,~L
Correlations inuj follow directly from Eq.(3.5), (8L /x7] oy

un2y=12 3.1
n 0 n 2 <( Z)> ! —Inz[asz/Z*], LX>Ly~LZI ( 9)
Gzz(r,na):<uz(r)uz(0)>5<(uz(r)) )—g(r,na) 2
d3 . where the length, is defined via
:f(quPGzZ(Q)e'(ql”qy”a), (3.10 I
pa— (3.20
where W2 BKy' .
6.0 T (311 a, is a numberL ,>7*, L,>x*, and terms that do not di-
A )= 52 z 2.7 ' ' verge with system size have been dropped. The calculation
Bg; +Kg,+K
Gz + Ky +Kyaayp(aya) of the displacement fluctuations in the linkit—oc and L,
3 ~L, is detailed in Appendix B. Thus SC “in-plane” fluc-
<(un)2>:f d°q G,Aq) (3.12 tuations are less divergent than 2D smectic fluctuations that
z (2m)% 227 scale as a power law with system size, but more divergent
than 3D Landau-Peierls smectic lamellar fluctuations that
and grow logarithmically with system siz§9,10.. The mean-
square angular fluctuatiof( ")%)=((d,ul)?) is finite, im-
g(r,na)=3([ul(r)—ud(0)1? plying that the SC phase has three-dimensional long-range
e orientational order.
4 i(q, - The IrfL,, divergence of (ul)?) is converted to a fr
=| ——G 1—elld-r+tayna)y (31 X,z g z
j (2m)® A0 ] (313 divergence in the functiog®(r) [Eq. (3.16]. In Appendix
D, we outline the calculation o§‘®)(r) for larger. The re-
It is useful to decomposg(r,na) into three parts, sults[6,7] are
g(nna):g(l)(na).i.g(z)(r)_g(3)(r7na), (314) |n2[8€yX/X*]+CX if z=0
2)(r) =2
grn=1 1, . (321
where Eln [32e7z/z*1+C, if x=0,
gM(na)=2([u(0)—ud(0)]? where y~0.577 is Euler’s constant ar@, andC, are con-

I stants that depend oA, and A, but have well-defined
_ q _ Ay ,— limits. Note that the onlyA, , dependence of the
_J' (277)3G22(q)(1 cosqyna), (319 correlation function in these two large distance limits is
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found in the constant€, andC,. C, andC, are evaluated whereK,=Ka andB,=Ba are 2D bend and compression
in Appendix D in the continuum limit &, ,—), in which  moduli, A = K, /B,, nonlinearities are unimportant, and 2D
we find C,=0 andC,= 7?/8. smectic fluctuations are described by the linearized elastic
The functiong®™(na) [Eq. (3.15] is by definition zero  Hamiltonian 73 of Eq. (3.5 with K,=0 [10]. At length
whenn=0. For alln#0, it diverges logarithmically with scales longer thah, andl,, the nonlinear terms in the rota-

system size: tionally invariant strain in Eq(2.1) lead to renormalized
L bending and compression modi#li,(q,) and B,(q,) that
(1) _ o2 =x diverge and vanish, respectively, at small wave nunther
g(na)=21,Sh(0)In) An(Ax 'AZ)X*}’ 3.22 [10]. Note that the nonlinear lengthgs andl, decrease with
increasing temperature, and thus nonlinearities become im-
where portant at high temperatures. In both the harmonic and non-
linear regimes, the Fourier transformed displacement corre-
_ (7, 1-cognu) lation function(|u}(q)|?) in each gallery were expressed as
Sp(t)= U, (3.23 z
0o Jt?+up(u) - -
Ga(d,) = = =120, 7Q(a,/ay),
-3 2 - ) g Kot gt B o
Si0)= 2 21 (3.24 (3.2

and A,(A,,A,) calculated in Appendix C depends on the wheredy,; = dx zlx, and

layer separatiom and the ultraviolet cutoffs but has a well- ~_y =0
definedA, ,— limit that is calculated in Appendix C. ~ o~ o~ G G
1ctiong® i O QA )~ g=vv 3 (3.28
The functiong'®’(r,na) [Eq. (3.17] is also zero amn x z!Hx a,” 0,=0.
=0. It has the same divergences as a function of separation

(1) i i
r thatg™(na) has with system size The scaling form of the correlation function implies that

In(Dx/x*) if z=0 Ez(qu_z:O)N_q;My ﬁmd Bz(?x=>0iqz);q(z‘2;’/:<- In th(ej
3) _ o2 , armonic regime whereq, . ,>1, Ky(q,)=K, an
gorm =250 In(Ez/z*)  if x=0, 329 B,(q,)=B, are constants, and the scaling exponentsjare
=4 and v=2. In the anharmonic regimg, ,l, ,<1, the
where D,, and E,, are numerical constants that have well- scaling exponenty and » were calculated exactly by map-
defined values in the continuum ||m|AX ,AZ_>OO, as dis- plng the 2D smectic model with thermal fluctuations onto the
cussed in Appendix E. Kardar-Parisi-ZhangKPZ) model in 1+1 dimensiong10].
It is useful to summarize the results of the calculationsThe exponents in the anharmonic regime gre7/2 andv
just presented. Whem=0, i.e., for points in the same layer, =3/2.
g(r,00=g@(r) grows withr as Irfr. Whenn#0, i.e., for The mean-square displacement fluctuations diverge in
sites in different layersg(r,na) diverges logarithmically ~both regimes with lengthk, andL, of the sample in thez
with system size for alt becausey)(na) diverges in this Plane:
way. If g¥(na) is subtracted frong(r,n), then the remain-
ing function g®®(r,na) grows withr as Irf(r/r,), with r, 2(r) _f d’q, G,(q, )= N 29T T
depending on the coefficient of tnin g©®(r,na) whenn {uz(r) = (2)2 20 =ML L L),
#0. (3.29

4. Limit K,=0: 2D smectic correlations where u,(r)=uj(r), 2a=y—1-v=1 in both regimes,

When K,=0, there are no interactions between planed-xz=Lxz2/lxz: f{P(0)=const, andf{"(w)~w**'" as w
(whenVY=0), and the system reduces to a stack of indepen=>%. This implies that the Debye-Waller factor
dent 2D smectic planes. Since experimdBisare consistent (exfidou,]>=exi] —a5(u2)]=0 in the limit of infinite system
with nearly independent 2D smectic layers, here we will re-Size, and there is no long-range positional order at any finite

view well established resulfd.0] for such systems. temperature in a 2D smectic, even when there are no dislo-
Decoupled smectics are described by the Hamiltonian o¢ations.
Eqg. (3.13 obtained by setting<,=0 in HSC. This Hamil- Since the mean-square displacement fluctuations diverge

tonian is a function of the full nonlinear 2D strai,. Non- @S @ power law with system size, the displacement correla-
linearities lead to important deviations from harmonic behav£ion function
ior. Since there is no coupling between laye@,,(q) is 1
mdependent ofj,, and we can define a 2D correlation func- g2°(r)= §<[urz1(r)_ ug(o)]2>:)\2|X|201f&2)(|z|/|x|1/),
tion Gy(q,)=G,Aa)/a.
At length scales less than the nonlinear lengths (3.30

8 K32 2 diverges algebraically with in-plane separation In Eg.
| =202 ==X 3.26  (3.30,x=x/l, z=2lI,, and the scaling behavior 6f*)(w)
is similar to that off (Y'(w). In the harmonic limit,
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, (ZE)Y? i x=0 gn(r,na)=3([h"(r)—h°0)]%) = 3([uy(r) — uy(0)]?)
99%°(N=1 (x/&,)  isz=0, (331 o _
zf 23 Cm(@[1- @], (339
where
5 diverge logarithmically witma andr,
AB3d*
&= 372 (3.32 ain(nan,A?)  ifr=0

kin(r.na)= i ifn=0, (337
is a correlation length along and &:=\(d/7)?(B,/T) 2mnIn(A(O)) ’
=2y\¢&,/ is a correlation length along These correlation
lengths are measured in x-ray scattering experiments at sufherex, = yB/K**, ko=2m/a, and

ficiently short length scales when layers are decoupled. ,

Fluctuations in the angl@=d,u, are nondivergent be- koT Xz
" . =——— | (KK K?/K*),  (3.39
cause of an additional factor of in the numerator of Eq. T 812\By K™ (

(3.29. Finite angular fluctuations imply thatcosé)=exp
[—(#)/2] is nonzero, and thus there is long-range orientawhere
tional order in 2D smectics when there are no dislocations
[9]. (e V):ifw do _
' 27 ) - 7\Jcod' @+ 2u sirf 6 co 6+ v sin* o
B. Correlations in h"(r) and uy(r) (3.39

_ _In the absence of o_rder in the_DNA strand_s, Iame_llar DNA|, Eq.(3.37, A and () are cutoffs that depend ok, and

lipid complexes are simply multicomponent isotropic lamel- d rati f bendi duli. In additioR.( @) d d

lar systems with height fluctuations identical to those of any "? and ratios of bending moadui. 1n adcl ion,(6) depends
on the angled thatr makes with thex axis.

isotropic lamellar smectic. The presence of orientational or
der in the DNA lattices introduces anisotropy into the effec- . .
tive bending moduli of the lipid membranes. By integrating C. Density correlations

out u;,‘(r) andu?(r) from the complete Hamiltoniaf ' of The DNA density correlation function arising from dis-
Eq. (2.17), we obtain in Appendix A an effective Hamil- placements parallel to lipid membranes is

tonian for height fluctuations. In the long-wavelength limit,

this effective Hamiltonian is S(r,na) = (expligo[up(r) —u3(0)1}). (3.40
This function is easily evaluated in the SC phase wké&n
H3o=1S a | Pri(Ban/ad (-1 s Y P
= :
+Ka’8(o7a0"/3hn)2], (333) S(r,na):e*Qég(r,na), (341)
where whereg(r,na) is the displacement correlation function de-
fined in Eq.(3.13. Sinceg(r,na) diverges with the system
Blam=Bad— (B{/Baa), (38.39  size for alln#0, S(r,na) vanishes in the thermodynamic

limit for all n+0. Thus DNA densities in different layers are

andK# is the bending-rigidity tensor defined in EQ.2D.  completely uncorrelated in the SC phase when the coupling
The model in Eq.(3.33 is an anisotropic version of the \u iy Eq.(2.16 is set to zero.

discrete smectic Hamiltonian often used to describe lamellar

systemg18,19. An effective Hamiltonian for DNA-lattice 1. In-plane correlations
height displacementsg(r) can be obtained by integrating
over h"(r) and uj(r) in H'" of Eq. (2.17. The resulting
Hamiltonian is identical in the long-wavelength limit e,

in Eqg. (3.33. Thus correlations im,(r) are identical in this _ igafu™ ) =0 ~—q2a@(r
modqel in the long-wavelength Iim%lt(t()) those ri(r). Sa(r)=S(r,0) = (%ol 1=0) =e %00,

Whenn=0, g(r,na) does not diverge in the thermody-
namic limit, and we have

3.4
Fluctuations irh" are determined by the correlation func- (3.42
tion with g‘®)(r) given by Eq.(3.16). Thus, from Egs(3.21) and
(3.30,
T
Ghn(q)= , (3.39 e GolanPBeMIX*] x> x*
Biamd;P(dya) + K*Pg2q5 B ’
SZ(XaO) - e—qSQZD(x,O) X<€X* , (3439

whereK *Aq705= Ksq4(a%+a2) 2+ K40y . This equation im-

plies that([h"(r)]?) diverges logarithmically with system -

size as it does in ordinary isotropic lamellar systems. ThavhereS,=e ™ %'".Cx s a constant, ang?°(r) is the displace-
coefficient of the system-size logarithm depends on the amment correlation function of a 2D smectic. In the other di-
isotropy inK*#. Similarly, correlations irh"(r), defined via  rection,
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Sze—(qglﬁ/z)lnz[sze*/z/z*] >

S,(0,2)= e—qggZD(O,z), 7<7*, (3.44

—qd2c, ;
whereS,=e%'«“z is a constant.

2. Interplane correlations

As we have just seer§(r,na) is zero whem#0 if V!
=0. WhenV" is not zero,S(r,na) is not zero, and it can be
calculated perturbatively in a expansion\ii/T. Using the
decomposition of E¢(2.18 of HSy, in to HSCandH Y, we
can expres$(r,na) as

(e

HUIT giaoluz(r) ~up(0)]y

S(r,na)= (3.45

<ef H u/T> !

where () signifies an average with respect t°C. This
expression is easily expanded in a power seriéé"iff. The
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where
2 d?rr2s,(r 35
T O)J 2S2(1) (3.5
for a=x,z andr ,=x,z and where
3 l( ol )l (3.52
=alnl=—| . )
T\ Wsy(a,=0)

Since S,(r) dies off at least as fast as " when K,=0
[9,10] and as exptconstX In’r) when K,#0, the mtegrals
in Eqg. (3.5) converge, and, and¢, are WeII defined.

D. X-ray scattering

X-ray scattering experiments probd(q)=(p(q)p
(—0q))/V, whereV is the volume of the system, apdq) is
the weighted sum of the DNA and membrane densities
pona(X) andpnendX). The total scattering intensity can thus

evaluation of even the lowest order term in this expansiorbe broken up into a DNA contributioipya(g), @ membrane

cannot be carried out analytically. In Appendix F, we evalu-contribution | ,e,{Q),

ate the lowest order term in an approximation in which
=0, B,,=0, and correlations i@,u (r) in different layers

are ignored. The result for the Founer transformSof,na)

is

L7u

v ) -
7] [Sa(a)1™,

S(q, ,na)= (3.46

whereVU=\VYe~Wy with

W, = qga®((d,up)?)/2, (3.4

and

and a DNA-membrane cross term.
Scattering from the ordinary columnar phase will exhibit true
Bragg peaks aB;,,= (0,(I + 30m)ky,m¢,). Herea=0 for a
simple rectangular columnar lattice, ame- 1 for a centered
rectangular columnar lattice. Since there is no long-range
positional order in the SC phase, there will be no Bragg
peaks in its x-ray scattering profile. Rather there will be
membrane-dominated lamellar peaksGg=(0,ky,0), and
DNA-dominated sub-power-law peaks @t,, for m#0.

The contribution of lipid membranes to the x-ray scatter-
ing intensity is

men{ ) = | merd Gly)| 2 e layna

(O:q)z TTSy(r) (3.48 Xf dre”1% TSy (r.na,gy).

(3.53

Sz(ql)=J

where
is the Fourier transform of the two-dimensional intraplane

density correlations function of E¢3.42). Since expression Sh(r,na,qy):<efiqy[h”(r)fh°(0)]>:e*qﬁgh(r,na)-
(3.46 for S(q, ,na) was derived under the assumption that (3.54
Ky=0, Sy(r) is, strictly speaking, the density correlation of
an isolated 2D smectic. However, a more sophisticated varigandgn(r,na) is evaluated in Eq(3.36). Thus, for example,
tional approximation, to be presented in a separate publica-

S,(0na,kg) ~ (3.5H

tion [14], yields a result very similar to Eq3.46 for
S(a. ,na) with $,(q, ) replaced by the true intraplane cor- Except for some anisotropies, this yields power-law Bragg
peaks that are essentially identical to those of a normal

relation function withK,# 0 obtained by Fourier transform-
lamellar smectic.

ing S(r,0) of Eq.(3.41).

TransformingS(q, .na) back to real space, we obtain The contribution of the DNA lattices to the x-ray scatter-
ing intensity is
eldL Ta(n+1)InSy(q;)

ol | .

The largen limit of this expression can be calculated using
steepest descents. For fixedindn— oo, the result is

(na)~ ",

d?q,
(2m)?

S(r,na)=

I'ona(@) ={pona(@) ponal—a))

_ ; 2 |f&(qy)|2|pnk|ze—iqynae—ikqoz”
nk

><J’dzre‘mqi'rsyz(r,na,qy,k), (3.56

S(r,na)= e Inlargye=[0P1E) (1] (3,50,

“néeé, whereAq<=q, —kgee, and
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Syz(r,na,qy K :<e—iqy[U§(r)—UQ(O)]e—quk[UQ(r)—ug(O)]>_ IV. STABILITY OF THE SLIDING COLUMNAR PHASE

(3.57 Until now, we have treated the sliding columnar phase as
though it were thermodynamically stable. We will now ex-
This correlation function is even more Compllcated to CalCU am|ne Cond|t|ons for th|s stabmty In order for the SC phase
late thanS(r,na) [Eq. (3.45]. WhenB,,=0, uy andu;  to exist, it must be stable against forces that bring about
decouple, and whek= =1, we have registry between neighboring DNA lattices to produce the
columnar phase; and it must be stable with respect to the
S,Ar.,na,q, k==*1)=S§,(r,na,q,)S(r,na), (3.58  disordering effect of dislocations that leads to a nematic
lamellar phase. In this section, we will investigate these two
where we used the fact that correlationsji}'are the same as effects. We find that the SC phase orders into the columnar
those in h". Thus, atr=0, this function dies off as phase via a rougheninglike transition at a decoupling tem-
n- 7 le ndéy whenqy =K. peratureTy and that it melts to the nematic phase via a dis-
If we ignore theS(r,na,q,) contribution ofS, (which  location unbinding transition at a temperatdigr. Thus the
would be justified foB,,— ) and we use the approxima- SC phase can only exist in a temperature rafigecT
tion of Eqg. (3.49 for S(r,na), then the sum oven in Eq.  <Tgy, and it cannot exist at all iTx+<T4. We calculate
(3.56 can be carried out exactly. The result for the dominantTy and T for our nearest-neighbor model, and we find that
contribution withk==*1 is

L = =<1 4.1
lona(@)= 5 S(AdD) Thua(ay) PF (@), (359 To ™

for systems with temperature independent coupling con-
where stants. ThusTx+<Ty4, and, for our model, the SC phase is
. Lo never thermodynamically stable. The introduction of com-
1_(V Sy(Aqy) peting nearest-neighbor and next-nearest-neighbor strain
2T couplings can, however, reverse the inequalityTgt and
VUS,(Agh) | 2 Tq and stabilize the sc phag&3]. Even vv_hen the SC phase
_ is not thermodynamically stable, there is a range of length
2T scales in the lamellar nematic phase in which correlation
(360 fynctions will exhibit SC behavior.

FO)= —is,(aqD)

1- chos(qya— o)+

The structure functionF(q) reaches a maximum af,

=mk, if a rectangular lattice ¢=0) is preferred and at, A. Relevance of translational coupling

=(m+3)ko, when a centered rectangular lattice<1) is In the sliding columnar phase, fluctuations of relative dis-

preferred At these. peaks;(q) does not exhibit .smgular pIacementsuQ”(r)—uQ(r) of DNA lattices in neighboring

behavior: the functionS,(Aq,) [Eq. (3.48] entering Eq.  ggajleries grow with increasing systems size. We found in

(3.60 can be expanded in powers ML to all c_)rders. Sec. A2 that<[u2+1(r)—uQ(r)]2>~In L [see Eqs(3.15
Out-of-plane lamellar fluctuations, ignored in E€8.59 54 (3.22]. Due to this divergence, the translational cou-

and(3.60 (by assumind3jam—), Eepome significant when  5jing [Eq."(2.16] may become irrelevant above a critical

the interlayer positional coupling® is weak. For example, gecoupling temperature. This result is obtained by calculat-

for V=0 and finiteBy,y, we find, using Eqs3.56—(3.58,  ing the expectation value of the translational coupling
1 1
|DNA:5|f1DNA(qy)|2f d?re 2% 'S (r,na=0,,)S,(r). (Hp)y= _Vuf d2r<CO§LQO(UQH_U2+aﬂzug)]>
(3.62 (4.2

Using EQ.(3.54), it is easy to see thdpya(g) has amaxi-  with respect to the sliding columnar Hamiltonian in Eq.

mumat ay= 0,Agl =0 [even for infinitely thin DNA, with  (3.1). Because the cross correlatidi, uy(u””—u;‘)) is
NA(qy) 1]. This peak remains aj,=0 for sufficiently  zero, we can evaluate this quantity exactly:

weak nonzerd/" [14]. Thus, for sufficiently weak interlayer

coupling, the scattering structure factor has a form resem-

bling that of a simple rectangular lattice, with a (0,1)-like <Hﬁ>=_Vu97WVf d’rexd —a5g(a)], (4.3

peak atq,=0 even though the system has short-range cen-

tered rectangular ordem real space With increasing whereWy=q(2)a2((aZu;‘,)2)/2 . Using the fact thag®(na)

strength of interlayer positional coupling, this peak will bi- . AN . .
furcate, at a critical value o¥", into two (=1,1) peaks at c_hverges Iogarlthmlc_ally with system si4€&q. (3.22], we
find that the translational coupling scales as

nonzerog, (as in Fig. 2. Such a change of the form factor is
not accompanied by a thermodynamic phase transition. It is

similar in character to the transition across so-called disor- (Hp~—Vie WLz, (4.9
dering line in random microemulsioi20,21], at which the

wave-vector maximizing(q) vanishes. where
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AT We can now calculate the energy cost of an arbitrary as-
74=2(ol ,)?2S1(0) = 5 (4.5  sembly of edge dislocations in the sliding columnar phase
d“VBK, using the SC Hamiltonian

The condition 2- »4=0 defines the critical decoupling tem- 1 K
perature HS°=§ ; af d?r| B(v})2+K(dwy)*+ a—g(vﬂ—u)'}“)z :
d?BK (4.9
— y
o2 4.8 \ritten in terms ofv"(r)=(v},v7). Our strategy is to mini-

mize this Hamiltonian subject to a nonzero dislocation den-
WhenT<Ty, the translational coupling scales as the systensity b"(r). As usual, the calculation is simpler in Fourier
size to a positive power, and" is relevant. In this case, the space. To transform from real space to Fourier space, we use
system becomes a columnar phase at the longest length
scales with a nonzero shear modulus for shifting neighboring
lattices relative to each other and long-range positional order
in the yz plane. WhenT>Ty, the translational coupling
scales as the system size to a negative power, \#&hiks ,
irrelevant. The system flows to the sliding columnar phase at b(q)= E af d2re~i(arranapn )
the longest length scales whé@m>Ty. Thus T4 marks the "
transition from the columnar phase to the SC phase as tem- .
perature is increased. This transition is of the roughening =ad>, ke (@ nitaynd), (4.1
type. There is no energy cost for shifting neighboring lattices "
relative to each other, and thus the sliding columnar phase i§/e minimize Eq.(4.9) using the Euler-Lagrange equations
positionally disordered in thgz plane. These conclusions znd find
are supported by a renormalization group analysis to be pre-
sented in Ref[14]. a,

o)== gl @), (4.12

v(q)=§ aj d2re i@ rraynaynpy (4.10

B. Dislocation unbinding

We have just seen how thermal fluctuations weaken interwhere
layer couplings to produce the SC phase from the columnar ) ) 5
phase. We will now consider the disordering effects of dis- K(9)g”=Kay+Kyayp(aya). (4.13
locations. An individual edge dislocation in a 2D smectic ha . .
a finite rather than a logarithmically divergent energy. As aSWe then employ constrairid.7) to relatev,(q) to the speci-

result, there are thermally excited unbound vortex pairs at alfl'ed dislocation densitp(q). In the final step, we insert the

temperatures that convert the 2D smectic into a 2D nematiEXpreSSionS fqv(q) into the Fourier transformed version of
at the longest length scaléa]. In a sliding columnar phase, Ed-(4-9), and find

each DNA smectic layer experiences an orientational order- 2 2 5
ing field from its neighbors. As a result, the energy of an D:Ef”’a %f d’q, K(aq)g’lb(q)|
individual edge dislocation in a given layer diverges loga- 2 (2m)% BGZ+K(9)g%q?
rithmically with system size, and there can be a Kosterlitz-

Thouless dislocation unbinding transition. The low- for the energy of edge dislocations in the sliding columnar
temperature phase with bound dislocations is the slidinghase. Also note that if we s&t, =0, Eq.(4.14 reduces to
columnar phase, and the high-temperature phase with uithe expression for the energy cost for edge dislocations in a

(4.19

711'/a27T

bound dislocations is the lamellar nematic phase. 2D smectic[9].
We now decompose the dislocation energy into a part that
1. Dislocation energy diverges with system size and a part that diverges only with

dhe separation between defects. After we insert @qll)

The DNA smectic lattice in each layer can have edg .
into Eq. (4.14), we find

dislocation defects in which the displacement fieJdunder-

goes a change dfd, wherek is an integer, in one circuit JBK.d?
around the defect core. If there are dislocations with integer = S 0o dn i IN[By (AL /X*]

e . D 2 nYn’<Yn—n’ n—n’ x/=x
strengthsk, ; at positionsr,, in layern, then 4 nn’

Vixvn(r):bn(r)y’ (47) + 2 kn’|knrl|rEn_nr(rn’|_rnr’|r) s (413

n,n’ 1"
wherev"(r)=V, u(r), and
where o,=2k, | is the total dislocation charge in tireh

bn(r):dEI kn’|52(r_rn’|) (48) Iayer,

w 4
J =f duyu?p(u)cosnu= ——, 4.1
is the dislocation density in layaer. " Jo P(W) 1-4n (4.16
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andB,(A,) is given in Appendix G. The first term diverges

logarithmically with system size. The interaction energy = */" ‘*_
En(r) [Eq. (4.195], on the other hand, is written in terms of H - + =
an integral that vanishes when=0, and thus it diverges 4!‘__ \+\ /_
only with the separation between defects. In the limit of in- () (b)
finite system sizeJ,,_,;, is a positive definite matrix. The
dislocation energy diverges logarithmically with system size + - + -
unless the total dislocation charge in each layer is zero, i.e., 9% 9 2 9_
o,=0 for everyn. N . B

The dislocation interaction energy of E@..15), © @

C

m *dt ——
En(r)=—f0 dufOAxx T\/t7+u7p(u) + =

1—co$tx/x*]exp{— Zi*t\/t2+ up(u) ) (e

(4.1 FIG. 4. (a) A sequence of closely bound dislocations in neigh-
boring layers interpreted as a dislocation lodp) An unbound
is difficult to calculate for arbitrary separationsifa), how-  version of the dislocation configuration ), also interpreted as a
ever, it can be calculated in the limits>x*, z=0 andz  dislocation loop.(c) A complex composite-dislocation paitd)

xcosnu

>7*, x=0. We find thatE,(r) scales as Melted composite pair ofc). (e) Opposite-sign dislocations at
nearby points in neighboring layers interpreted as a crossed dislo-
IN[CX(A|x|/x*] if x>x* and z=0 cation loop.
E.(r)=-J ) . . . .
n(r) "IN[C%(Ay|2)/z*] if z>z* and x=0, layern has a single dislocation of chargs, (which may be

zerg. The free energy of such a composite dislocation con-

whereC}?%(A,) are numbers that depend on the layer indexﬂgurfmon 's, by Eq(4.19,

n and the cutoffA, and are given in Appendix G. Note that Fo=Ep— TS
the A,—o limit of E,(r) is not well defined. Sinc&,(r)

~Inr/(4n*—1) for larger, E,(r) is positive for alln>0 and _ VBKyd2 2 J —2T | InL + const
negative forn=0. As a result, like-signed dislocations in 42T 5 n—n’InTn’ '
different layersattract each other, whereas like-signed dislo-

cations in the same layeepel each other. (4.19

The attraction of like-sign dislocations in different galler- Clearly Eq.(4.18 indicates that composite dislocations pairs

ies makes physical sense. The dislocation excitations of thgnpind for temperatures above the Kosterlitz-Thouless type
SC phase can be viewed as closed loops carrying a S'r‘g{@mperature:

value of charge, with portions of the loop passing normal to

layers and portions passing parallel to layers. Those parts of B Kde
the loops passing through layers give rise to layer disloca- Tkrlonl= ez Y Jon T - (4.19
n,n’

tions, and those parts aligned parallel to layers cost no en-
ergy because the shear modulus is 2€r@]. A direction can  |f o, is nonzero only in layem (o= &,y,), the transition

be assigned to a loop. A loop section penetrating a layer iRorresponds to an unbinding of simple dislocations pairs
the upward direction gives rise to a dislocation of one signyithin a single layer. Ifr, is nonzero in more than one layer,
while one penetrating in the downward direction gives rise tahe transition corresponds to the unbinding of composite
a dislocation of the opposite sign. As is apparent from Fig. 4mytilayer dislocations pairs, as depicted in Figo}

the expectation is that the lowest energy configuration of a \ye see that each configuration of dislocatidns} will
continuous loop will penetrate nearby points in nearby layerfave a different unbinding temperature. The naive expecta-
in the same direction, i.e., that nearby dislocations in nearbyon is thatT, is lowest when there is a single dislocation in
layers will have the same sign. This argument is, of coursey single layer. It is, however, possible that composite dislo-
not rigorous because it is possible for dislocation lines runzations might melt at a lower temperature. Hence we define
ning parallel to layers to cross to produce nearby dislocationg, _— min, Ty o). Above this temperature, one of the dis-

e e e erocaons. fooEAlon confguratonseter composie of sk
whi(,:h like-sign dislocations in neighboring layers repel binds, renormallzes the compression modiBus Zero, and
rather than attract destroys the in-plane 2D smegtlc order of the sliding colum-
: nar phase. The lowest unbinding temperature corresponds to
2. Dislocation unbinding temperature the configuration with the lowest In, divergent energysee
: Egs.(4.19 and(4.19]. SinceJ,<0 for alln>0, |J,| decays
In Sec. I, we showed that the dislocation energy is loga-with increasing layer separation, and the dislocation energy
rithmically divergent unless there is dislocation charge neuscales quadratically with the dislocation charge; the lowest
trality in each layer. Consider now a configuration in whichenergy configuration witiN defects is a string oN defects
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of strength+ 1 with one in each layer, i-ean=2§:15n,p- It TABLE I. The nonlinear lengths, andl, calculated as a func-
is then straightforward to show that the lowest of these contion of the DNA spacingd using the experimental values of the
figurations is an individual defect witN=1. Therefore, the ~in-plane correlation lengt, .

dislocation unbinding temperature for the sliding columnar

phase is Nonlinear length d=28 A d=55 A
Iy 0.35 um 0.24 um
d?yBK, l, 9 um 6 um

(4.20

Tkr=

22
V. CHARACTERISTIC LENGTH SCALES

The ratio of this temperature to the unbinding temperaiire

[Eq. (4.6)] yields Eq.(4.1) for B=Tyq/Tg=1/m2 Whether or not sliding columnar behavior is seen in re-
. . . . - KT - .

cent x-ray scattering experiments on CL-DNA complexes is
still an open questiofi3,4]. Even though the sliding colum-
C. Comments on lyotropic systems nar phase is converted into a nematic lamellar phase at the

An interesting aspect of the present study is the transitionion9est length scales, the SC phase may exist at shorter
from the sliding to the columnar and the nematic phase w ength scales determined by the density of edge dislocations.

discussed above in terms of the corresponding critical tem! "US CL-DNA complexes studied in recent experiments with

peratures: the decoupling temperatlite[Eq. (4.6)], for the ~ domain sizes. ~0.1 um may exhibit a sliding columnar

columnar to sliding phase transition, ahgy [Eq. (4.20] for beh.avior. However, in the next round of experiments it will
the sliding to nematic phase transition. In lyotropic systemé’e important to prepare aligned CL-DNA samples because

of interest here(Refs. [2—5]), temperatureé changes can powder averaging complicates the functional form of the

hardly produce significant effects. Nonetheless, the abovecattering intensity and makes it difficult to identify sliding

transitions can still be triggered by varying the period ofcolumnar behavior. . . .
DNA lattices (as lattices described in Refi2—-5]). Indeed, We showed in Sec. Il that the density-density correlation
from previous discussions, the decoupling conditign function Sx(r) [Eq. (3.42] displays different functional
>T,, is equivalent tozg>2, with nd=4T/d2(BKy) 12 forms depending on the magnitude of the |n-pllane separation
Thus the decoupling transition from the columnar to sliding" The crossover length scales for the correlation function are

phase may be triggered by changing the strength of the inx z» €a, X*, andz*. The harmonic 2D smectic regime is

terlayer orientational coupling constakt,. As evidenced efined byx,z<l, ; and the nonlinear 2D smectic regime is

clearly in experiment§4,3], the strength of interlayer cou- d&fined byx,z>1y,, where the nonlinear lengthls , are

plings significantly increases by increasing the period ofVen in Eq.(3.26. To estimate the nonlinear lengths, we

DNA lattices. Thus, by swelling these lattices, one mayMust determing, andl in terms the experimentally mea-

reach a transition in which the sliding phase changes into §U"€d quantitiesi and the harmonic correlation lengé of

columnar phase, as discussed in Sec. IV A, and, in mor&d- (3.32. I, andl, can be written in terms off and ¢, by

detail, in Ref.[14]. Finally, we emphasize that, within the S°lVing Eq.(3.32 for B, and using

simple model discussed here, there is no true sliding phase,

as suggested by E@4.1) that applies to systems with tem- Ko=Téy/2d, (5.9

perature independent coupling constants. It should be

stressed, however, that the restriction of having temperaturavhere£,=500 A is the persistence length of DNA. Table |

independent constants is not essential for this important corévaluates the nonlinear lengths for two DNA spacings of the

clusion about the sliding phase stability. Neither is it essenexperiments of reference®,3]. It shows thatlL <I, , and

tial whether the system is thermotropic or lyotropic in indicates that significant departure from harmonic 2D smec-

character. Indeed, as seen in Sec. IV A, the condition to havéic behavior is not expected in agreement with these experi-

dislocations boundi.e., T<Ty7) is equivalent topct>2, Mments.

with ngr=d?*(BK,)Y¥7?T, for the model discussed here  The finite length of the DNA moleculelyya~16 um

(Sec. 1). Note that introduces another crossover length scale. The density of
DNA molecules within a given layer ig=1/dIpna - If we

N4 mxr=4m*<A4. (4.21) assume that each free end of a DNA strand corresponds to a

dislocation, then we can estimate the characteristic distance

This relation implies that the condition for dislocations con-Pbetween dislocations to be

finement (pxt>2) and the condition §4>2) for sliding

phase decoupling cannot be simultaneously realized. When- &q=Vdlpya. (5.2
ever the decoupling condition is realizedyy>2, nxt

=4/m?ny<2, and dislocations will unbind. This feature This length is clearly smaller than the actual distance be-
turns the sliding phase into a nematic phase at long lengtiween dislocations because not every end of a DNA strand
scales. Still, at low dislocation densitiéghat may well be has to produce a dislocation: a series of DNA strands can
the realistic case; see Sec),Vh such a nematic phase, there align in a row to produce a layer of a 2D smectic. At lengths
is a broad range of length scales exhibiting sliding-phasecales greater thafy, the 2D smectic behaves like a nem-
correlations and other structural properties discussed in thiatic [9]. Using the estimate of Eq(5.2), we find &,
work. ~0.21 um and 0.30 um, whend=28 and 55 A , respec-
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tively. Note thatL <&y, and thus the subdomains are smallfactor Ipya(q) exhibits a maximum at the simple
enough to possess 2D smectic ordering. rectangular-lattice points (0,80,), even though the system
We can also estimate the energy cost for creating hairpihas short-range centered rectangular order in real space. The
edge dislocations within the 2D smectic lattices. Hairpinsdifferences between the positions of the scattering peaks in
cause the DNA director to change layover a lattice spacing Refs.[3] and [4] may be explained by the differences in
d. The energy cost for a hairpin can be estimated from thehermal disorder and/or interlayer couplings strengths of the
2D bending energy. If we ignore relaxation of the 2D smec-two systems. The interlayer correlation length reported in
tic layers, we estimate the bending energy to be Ref.[4] is several times longer than that reported in R&.
The former system is stiffer and more ordered than the latter.
Consequently the (1,1) and-(1,1) correlation peaks in Ref.
[4]reflect the centered-rectangular order in real space de-
picted in Fig. 1, whereas the (0,1) peak reported in Rzf.
which implies that hairpins are favored on length scaleseflects the merging of £1,1) peaks brought about by
greater than strong thermal fluctuations and/or sufficiently weak inter-
layer couplings.
Enp After completing this work, we learned from Joachim-Ra
Enp=dex o7 )" (5.4 dler of experiment$22] showing a continuous variation of
the DNA form factor with changing strength of interlayer

Since &y,>&4>L throughout the experimental range di coupling VY consistent with the change we describe above
hairpins are not important for the current set of experimentsand in Sec. lll D(a crossover from centered rectangular scat-
We do not yet have accurate estimates®ofandz* since the ~ tering pattern to one resembling that of a simple rectangular
value of the orientational rigidity, is unknown. Scattering lattice). In these experiments, the variation of interlayer po-

experiments will see sliding columnar behavior on lengthsitional coupling is produced by varying the period of DNA
scales less thagy if x*,z* <&,. lattices in galleries. This coupling generally increases with

increasing period of DNA lattices, most likely because the
Coulomb interaction increases and the elastic membrane de-
formation increases, as suggested by electron density maps

In this paper, we have introduced the new sliding colum-of the systenj22].
nar (SC) phase of matter which may exist in layered systems
composed of weakly coupled 2D smectic lattices. The sliding ACKNOWLEDGMENTS

columnar phase is characterized by weak positional but )

strong orientational correlations between neighboring 2D L-G. acknowledges support by Mylan Pharmaceuticals,
smectic lattices. The SC harmonic free energy contains afi¢» and C.S.0. and T.C.L. acknowledge support from the
orientational rigidity that aligns neighboring 2D smectic lat- National Science Foundation under Grant No. DMR97-
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moduli. The SC phase is characterized by a vanishing she&pVer, Joachim Reler, Cyrus Safinya, Tim Salditt, and John
modulus for relative displacements of 2D smectic lattices.]Oner-
The presence of the orientational rigidity fundamentally al-
ters the energy spectrum. In light of this, we have calculated APPENDIX A: DERIVATION OF EFFECTIVE
the structural properties of the sliding columnar phase such HAMILTONIANS
as the SC displacement correlation function, scattering inten- . . . : . .
In this appendix, we will derive the effective Hamilto-

sity, and dislocation energy. . sc sC
Experimental research on layered liquid crystaliine sysnians™ " [Eq.(2.19], and;™ [Eq. (3.1], and 71, [Eq.

tems studied in this work is in progref8-5]. Correlation  (3-33] obtained, respectively, by integrating obf\(r),
peaks discussed here theoretically have been observed inh4(r), and uy(r) and uj(r) and uy(r) from F=7 "
number of scattering experiments on DNA-cationic lipid + 7 ™+ H "', which we can express in linearized form in
complexes. Referendd@] reported DNA scattering patterns Fourier space as

that clearly reflect the short-range centered-rectangular order I

depicted in Fig. 2. Refereng¢g], on the other hand, reported -~ q

peaks in a different system at the simple rectangular IatticeH: Ef (2w)3{Ah(Q)|h(Q)|2+§U“ Aq()]ug(a)|?

positions (0,0:qg) [i.e., at(0,1) peakd. In spite of this

difference in scattering data, it is likely thabth systems

have short-range centered rectangular orderes space _2 [Ao(@ug(Dh(=a)+ Ao (=D u,(—ah(a)]
Indeed, in a strongly fluctuating disordered systems, posi-

tions of correlation peaks ig space may not always reflect (A1)
length scales and short-range order in real space. For ex-
ample, the correlation peak @space in random microemul- Whereo=y,z, and
sions[20,21] may occur afg=0 even in situations in which
real space data still show a finite structural length scale. As
discussed at the end of Sec. Ill C, for sufficiently small cou- 5 4
pling interlayer positional coupling/T, the scattering form Ay(q) =4(B3zqg/a%) + Kaqdy

Enp_7&p

2T 4 d° (5.3

VI. DISCUSSION AND CONCLUSION

An(0)=Kzqq? +4(B3q/a?),
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AL(0) =Bag02+ Koqx + Kyazasp(aya),

Ay(Q)=(2B34/a?)(1+e 'W?),

No(d)=—(Bun/a)iq (e "%~ 1). (A2)
Integration ovelh(q) yields
—er 1 d%q
SC_— ’ 2 ’ 2
H _zf (277)3[Ay(q)|uy(q)| +Az|uZ(Q)|
= #(uy(@)u (=) = u(=Duy(—uy(a)],
(A3)
where
INo(@)]?
Al (g)=A - A4
Ay(A(—0)
= A5
G WE (A5)
In the smallg, limit, these expressions reduce to
A, (0) = (Bsq/a?)2(1—cosq,a) +K*Pg2q5, (A6)
Bin
AL(@)=Baq0; 4B, 7B 0:2(1—cosqya) + Kaqay
+K,a5d;p(a,a), (A7)
m(q)=— (Buh/a)qzsmqyaa (A8)

whereK*# is the bending rigidity tensor of E¢2.21). Fou-
rier transformation of Eq(A3) back to real space using the
low-q, form of Ay(q), A,(q) andu(q) produces the sliding
phase Hamiltoniari S€ of Eq. (2.19.

The effective Hamiltonian fou, is obtained by integrat-

ing 75 overu, . The result is

oo 1 d®
Ho=3 J ﬁA’;(q)luz(qﬂ% (A9)

where

|w(@)]?
Aj(q)

AJ(@)=Aq)— (A10)

In theq, —0 limit, AJ(g) becomes

82
A’z’(q)—>q§[82d 1B, 1521 —com,a)
_B_ﬁh sirfgya

Byq 2(1—cosqya)

+K,qZa5p(gya) + K g0y (A11)

2

Bag

=qZ| Bag— +Kaoqy

+Kyaza;p(aya), (A12)
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where we used the identity

sifg
1—-cos¢p+ m—z

(A13)
to obtain Eq.(A12). Transformation ofH>C to real space
using the lowg, form of A2 producesH S€ of Eq. (3.1). The
absence of any, dependence in the coefficient qﬁ in
A’(q) can be traced the equaliBf,/Bzy=4B,,[Eq. (2.20]
that results from integrating ol" from the original model.
Effective Hamiltonians foh"(r) and uy(r) can be obtained
by integrating outuy anduj from H'" anduj from # ¢,
respectively. The results are

10 d®
=3 J %Aﬁ(q)lh(q)lz, (AL4)

1 dd
25| GapA@u@P,  (a19)

where
, 2 )Y 2
i@ =)~ AL ,jy((‘g)', (A16)
A 2

Ay(@)=Ay(q) (@) (AL7)

An(Q) =N (a)|AL)

In the limit g, —0, with g5<(B24a%/K,)qZ, both of these
Hamiltonian reduce t@4,, in Eq. (3.33.

APPENDIX B: CALCULATION OF ((u})?)

In this appendix, the expression for the sliding columnar
displacement fluctuations given in E@.19 is derived. To
do this, we evaluate the integral of the Fourier transformed
SC correlatorG,,(q) over all g space,

.
K, a5p(aya)’

Z)2> f (271_)3 qu+ qu+ (Bl)

where p(u)=2(1—cosu)/u’>. The fluctuations diverge at
small wave numberg~1/L, whereL is the system size. To
calculate how the fluctuations scale with, we setL,—x
andL,~L,. Note that the SC form foG,/q) is valid only
whenL,>x*, wherex* =a/u, and u,= K, /K. The first
step in the calculation is to perform the integration oger
with A,—o and then use the fact th&,,(q) is an even
function of g, so that the remaining integrals run over only
positive gy andq, . Note that taking the\ ,—c limit does
not alterq, ,— 0 divergences. The resulting expression

« d 1
2)2 = -1 '
((u)%)= 2¢_f qxj 9l "o+ ulagp(a,a)

where A= m/a, is made dimensionless by changing vari-
ables tov =q,x* andw=q,a. The IrfL, divergence of the
displacement fluctuations can be seen immediately by look-
ing at theq, y,— 0 limit of this expression.
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k) 1 L
2uy | 2 2uyly

The SC displacement fluctuations can be written as the @ .
sum of a continuum ternh, that does not depend qm(w) I =In[2aL, “JIn[A,L]+ 5In
and discrete ternhy that does depend gm(w),

AyLy/nyds
- +f ! ( \/1+s In[SIZ]),
uN2)= ————[l +1g4], B2 Lylbxsy S
<( z) > 27T2\/B_Ky[ c d] ( )
_ has two terms that diverge and two terms that do not diverge
wherel. andly are defined by with system size. Note that /Lx,uy is O(1) since L,
~L,. We then subtradt? from I, drop the nondivergent

terms and sety=L, to obtain

I dvf W

AXX* dU aAy
| 4= — dw
Lt v Jant
for the continuum contribution to the displacement fluctua-
We first focus on the continuum contributidp. The inte-  tions.

le=In[A,L,JIn[A,L ]——| n? A: }=—In2[2,uyA L]
y

1
VoZ+w?p(w) N

gral overw is straightforward: The discrete contribution is obtained by evaluating
Ayx* *
|c=f* —[f(Ayap)— (L, a,0)]=11-12), | 4= fAXX_ ~Fw), (B7)
X L x* L 1p
(B3)
f(x,0)=In[x+ VxZ+v?]. (B4) w
F(v)—f dw\/ — —\/ — (B8)
The integral ovep in I£1) can be evaluated by separating the v+ Wop(w) vitw

function
In the definition ofF(v), we can take the lower limit to zero

since the smallv part of integral is well behaved. In contrast
to the continuum term, the discrete term diverges logarithmi-
cally with system size. To see this, we expdn@) around

_ H — 2
into a constant term and a term that is well behaved at smati=C and find F(v)~F(0)+av®+0O(v?), where F(0)

v. We then insert this expression into E83) and find that — N[4/7], anda is a constant. Thusg=In[4/m]In[A,L,]
plus terms that do not diverge with system size. To make the

argument of the In term ihy match the IA term inl,, we
add and subtract the constanfdfr]In[2u,A,/A,] to find

11
f(Ayav)=M[2A,al+In| 5+ 5V1+(0/Aa)?

I(l)_l Ayx* dv
o '=In[2Aa]In[A,L,]+ —

%, —1
xX*L - U

lg=In[4/m]IN[2 A L,]. (B9)

1 1
+5V1+(v/Ay a)?

><an 5

(B5)

We then add . andl and find the following expression for
The first term diverges with system sikg, and the second the displacement fluctuations in the limit,—o and L,
term is nondivergemf(aL;l ,0) can also be separated into ~Ly:
a constant term and a term that depends oWe then inte-
gratef(al, *,v) overv to find (U2 = 12N 8L, /x*]. (B10)

()= -1 Aot dv
I¢”=In[2aL, “]In[A,L,]+ 1D APPENDIX C: CALCULATION OF g®(na)
In this appendix, we calculate the divergent part of the
(B6) position correlation functiog™)(na) in Eq. (3.22. We per-
form the q, integration, switch to dimensionless variables,
and find
The L, dependence in the integrand of the second term can
be moved to limits of the integral by changing variables to Ak dt .
s=Lyv/a. In contrast to the previous expression g} in g(l)(na)=2lﬁ{ f | L S FA(ALAY) | (CD)
Eq. (B5), the larges part of the integral in Eq(B6) diverges XLy
with system size. The divergence can be isolated by adding
and subtracting [#/2]/s. The resulting expression, whereS,(t) was defined previously in E¢3.23), and

2
Lyv

a

1
+ o1+

><In§ >
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(A A)__f xx*dt 1—cosnu I(xA)—fod 1—C05(Q><X)fw/><* day
I P 0] T T Vai+ agp(ayc)’

tinuum and discrete contributions, as we did previously in
Appendix B, where

2 A,Z* We then decompodéx, A,)=1.(x,A,) +14(x,A,) into con-
1- —arctan —————— (C2
™ tVt2+up(u)

Note that the integral defining,(A,A,) does not have an A 1—cogqx) (mxr d
infrared divergence as—0 (L,—), and thus it is a well- Ic(Xan):f “da, A J"T X R ,
defined number. In the final step, we isolate thé Juliver- 0 \/qXJrqy
gence in the first term of EqC1) to find

Ay 1—codgyX) [ =ix
g®(na)=212S,(0)IN[A,(Ay, AL /X*],  (C3) Id(x,Ax)=f0 dqufol

where 1

xXdq - .
I VaZ+a?plax*)  aZ+q?

An(Ax,Ap)=exd cP+cB(A) +cP (A, AT (CH

depends on the layer indexand the ultraviolet cutoffs with  Since theA,—o limit is well defined, we calculaté(x)
=l.(x,») andl4(x)=14(x,0) and drop terms that depend

@_ [*dt] Sa(t) cy On the finite ultraviolet cutoff.
n 0 ' o calculate the continuum contribution, we first sgt
¢ S:(0) ©9 " '10 calculate the conti ibuti fi
=ugy and therw =g x. These changes of variables yield
«dt Sy(t)
2 . AyX .
c(A —J ———, C6 axix* dv
I P Sn(0) € l(X)= 0“ —K(), (D4)
An(AyA,) where
(3) —_moxery
Cn (AXIAZ) Sn(o) (C7)
1- cos{uv)
Note thatA,(Ay,A,) is well defined in the limitA, ,—o. K(v)—f du el (DY)
APPENDIX D: CALCULATION  g@(r) The strategy for calculating theZ@aterm inl(x) is to iso-
In this appendix, we evaluate the SC position correlatio2!€ the part oK (v) that scales as infor largev. To this
function end, we write
1 o idu »du 1—coquv)
R T 1) S U TR e ER TN B =S

between two DNA strands located in laye=0 and sepa- idu 1
rated byr in the xz plane. For general separatiomg?)(r) + 07[1_005{“0)] N
cannot be expressed in closed form. The aim of this appendix

is to calculateg'®(r) along the special directions=0, X |t js obvious that only the first term has the correct scaling;

-1|.  (D®)

>x* andx=0, z>z7*. the remaining terms irK(v) are then separated into con-
stants and functions af that are well behaved either as
1. Large x, small z limit —0 orv—co. This partitioning leads to
The following expression fog?)(x,0) is obtained by set- -
ting z to zero in Eq.(3.16): K(v)=In(Bv)+K(v), (D7)
1—cogq,X) whereB=2e?, v is Euler’'s constant, and
9(2)(X’0):Tf @) BT K K, ap ()
ST o) Riop= [ (0o - “du cosuw)
v u 1 U J1+u?
The first step in the derivation @f®)(x,0) is to perform the
integration overy, with A,—c. Theq, integration yields 1 coquv) 1
—f du -1 (D8)
- 0 u J1+u?
(2) -
g (X!O)_ 2 I(XlAX)! (D3)
2m?\BK, scales as 1f for largev.

We then inserK(v) into Eq.(D4) and break the integral
where overv into small- and large- parts to obtain
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*du -

—K(v).
v
(D9)

1dv axix* dv XIX
()= | —K(v)+ —In[Buv]+
ov 1 v 1

Next we evaluate the integral over in the second term,

collect constants, and find
1 2 *
l(X)= Eln [2e7mx/x* |+ A, (D10

where
A= 1| 2 7+flde +deR
X Zn[e] 0o U (U) 1 v (U)
(D12)

The second and third terms &, are finite sinceK(v) scales
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2. Large z, small x limit

The calculation of)?)(0,2) is similar to the calculation of
g@(x,0). The expression fay(?)(0,z) is obtained by setting
x to zero in Eq.(3.16). The first step in the calculation is to
perform the integration ovey, with A ,— %, which yields

9®(02)= #B_Kyl (z,A%), (D17)
where

xdqx 1—e‘z”qx\/m
I(Z’AX)ZJ Y )

In what follows, we setA,—<, drop terms that depend on
the finite ultraviolet cutoff, and definé(z)=I(z,). The

asv? for smallv in the former, and there is phase cancella-second step is to change variables ue=q,/q, and v

tion from the cosfv) factor at largev in the latter.

—7\2(;1y and decomposk(z)=1.(z) +14(2) into continuum

We will now calculate the discrete contribution to and discrete terms, where

9@ (x,0). The first step is to rewritg;(x) in dimensionless
form:

Axx*dl)
Id(x):J0 7[1—c05{vx/x*)]F(v), (D12

where F(v) was defined previously in EqB8). We next
break the integral ovey into small- and large- parts and
take thex>x* and A ,— < limits to obtain

tdv ~dy
la(x)=F(0) 07[1—cos(ux/x*)]+f1 —F()

idv
+ [ 2 rw) -Fo), (D13

Note that taking thex>x* limit removed the cos(/x*)
terms from the last two terms in EgD13) due to phase

cancellations. It is again obvious that the first term scales

logarithmically withx/x*, and thus

X
() =In[4/m]in e~ |+B,, (D14)

where

~[tdv =dv
8.~ | StFw-FO1+ | R0 019

is a constant. The last step in the calculatiorgX,0) is to
add the continuum and discrete termhgx) andl4(x). The
final result is

X
8€7X—*

+Cy, (D16)

g@(x,0) =1 ﬁ( In2

where C,=2(A+B,) — In7{4/7]— 2 In[4/7]In[27]. A, and
B, are computed later in this appendix; see E@34) and
(D35). By using these equations, we eventually find tGat
in Eqg. (D16) vanishesC,=0.

l1-e M 1+u2

o3[

uyi+u? (D13
*dv .
l4(2)= OF[F(U,O)_F(U,UZ/Z )], (D19
with 7= 7?2/z*, z* =a?/ )\,
e - w2 +u’p(u) e—r v2+u?
F f , (D20
(0= \/v2+u p(U)  Volt U (D20

andF(v,0) is equivalent td=(v) defined in Eq.(B8).

We first focus on the continuum contributiong&’(z,0).
The integral ovew in 1.(z) can be broken into small- and
largev parts,

1 (idv 1 [ #2zz+dv
Ic(z)=§f07J(v)+§Jl 7\](1}), (D21)
where
—vu 1+u?
o= [[at=e
(@)= uy1l+u? (b22)

The strategy is to extract the part &fv) that scales as
for largev. If J(v)~Inv for large v, I.(z) will scale as
Inqz/7* ] as expected. Note thdfv) scales as? for smallv,
and thus the first term in EgD21) is a finite constant. After
some algebra, we find

J(v)=In[Dv]+JI(v), (D23)
whereD =2e?,
—vuvl+u2 1 1_(IJ(U)
J(v)= du——J du du—————
V2u 1 uyl+u? 0 uyl+u?
xe v (D24)
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and
B(u) 1+2u? 025
u)= .
Vi+u?

We can now insert the expression fifw) in Eq. (D23) into
Eqg. (D21) and obtain the continuum contribution

+A,, (D26)

1, , Z
Ic(z)=ZIn 2e’w =

where

1 5 1 (idv 1 (=dv~
AZI—Z“’] [267]4- EIOTJ(U)-F EJ; ?J(U)

(D27)

is a constant. Note thak(v) decays exponentially for large

v, and thus the third term iR, is finite.

We now concentrate on the discrete contribution to

9®(z,0). The integral oves in 14(z)=1{"+1{ can also be
broken into small- and large-parts, where

|E,1’=fld—v[Fw,O)—F(v,vz/Z*)l (D2§)
ov

and|{? is an identical expression except the limits on the

integral overv run from one to infinity. To isolate the In
term in 1Y, we change variables to=vz/z* and take the
z>7* limit. In the largez limit, Eq. (D28) becomes

_ 1dy
+B,,+ JO T[F(U,O)— F(0,0],
(D29)

Z
1{M=F(0,0)In =

whereF(0,0)=In[4/7], and

— 1dt =dt
Bz:f T[F(O,O)—F(O,t)]—f + F(Ob (D30
0 1
is a constant. The large-contribution tol 4,
(D31)

is simply a constant whem>z*. We then collect the dis-

crete contributions, and find

lg(z2)=1{P+1P=1n +B,, (D32

4I z
_n_
m| | Z*

whereB,=B,+ B, with B, given by Eq.(D15).
The last step in the calculation gf?)(0,2) is to addl .(2)
andl4(z). The final result is

(D33

1 z
g<2>(o,z)=|5<—|n2 32e7— +CZ),
2 z
where C,=2(A,+B,)—2In{4/w]— 2In4lm]In[2e"7?]. A,
and B, are calculated later in this appendsee Eqs(D36)
and(D37)]. By using these equations, we fit}= 7?/8.

L. GOLUBOVIé, T. C. LUBENSKY, AND C. S. O'HERN

PRE 62

3. Calculation of A, , B,, A,, and B,

In Secs. 1 and 2 of this appendix, we anticipated that the
numerical constantd, , B,, A,, andB, have the values

A (D34)
B 2 In?( )
By=— 57 T4I*(2) ~[In(2)]In(m)] - ——,

(D35)
_7772
A= (D36)
2
B,=— E+6|n2(2)+2y In(2)—[In(2)][In(7)]— y In(r)

In this section we outline calculations yielding E¢B34)—
(D37). We begin by deriving more explicit formulas for
these constants. Thus, fAr, we obtain, by Eq9.D6), (D8),
and(D11),

1
Ax=—5In*(2e7) +AD+AD+ AR (D38
with
1 1-co o co
A§1>=—f dv |n(v>—s(v)+f do In(o) 22
0 v 1 v
(D39)
A2 fldu ! 1{In( )+f In( ),
= — - u u
X o U |yJ1+u® V1
(D40)
and
AR)= J a1 J . (D4Y)
X 0 V1+u? N

Likewise, for the constanf,, we obtain, by Eqs(D22),
(D24), (D25), and(D27),

1
AZ:——In2(2e7)+ AL+~ |n2(2)+%ln(2)

1
+5AP+ YA, (D42)

where
—X —X

del €
+ . xIn(x) vt

1
M= _
A fo dxIn(x)
(D43)
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( ) grations, this yields our Eq:D48), which, combined with

AP = j du In(u\/1+ u?) Eq. (D47), yields values of the integrals(") and A" . To
complete this calculation we need also the value of the sec-
ond derivative ofl'(z) at z=1 that enters Eq(D48). To

f du———— In(u 1+u?), (D44) compute it, we use a relation from the theory of théunc-
tion,
1 1-d(u) 1 dI'(z)
A(3>=f du—+J du——, (D45 4, —L(@¥(2), (D52)
i PR el Pl TR e dz

with ®(u) defined in Eq(D25). We proceed to compute the with
integrals in Eqgs.(D38)—(D45). Integrals Egs.(D41) and

(D45) can be done by elementary integration methods, yield- V(z)=—y+|1— 1 + 1_ _1 l - _1
ing z 2 z+1 3 z+2
(D53)
3) @_n2) . -
AT=In2), A= (D46)  T'(1)=1, (dI'/d2),—,=V¥(1)=—v. By differentiating Eq.
(D52,
Other integrals are not elementary, and we outline their cal-
culation in the following. Thus we compute the integrafg’ d’T dr dw
and A first by showing that 2| Tl\az) YO+ID|{57
z y 9 dzz 7=1 z z=1 z z=1
W a0 dw
A=A g (D47) =52+ E) . (D54)
=1
and, next, by showing that )
The use of Eq(D53) to computedWV(z)/dz at z=1 yields
y 1[dT
A§)— a7 (D48) d2r +1+1+1+1+ L
=1 dzz z=1 7 2 3 42 4 6 .
wherel’(z) signifies the gamma function. (D55)

To obtain Eq.(D47), consider the complex function _ .
f(z)=e 4n(2)/z In the complexz=x+iy plane, f(z) is BY Eas.(D55), (D47), and(D48), we finally obtain
analytic inside the contou€ made of the following four

segments:C;:[z=X;e<x<R], C2:[z=Rei0;0< 0<l2], A(l):?’_z_ 77_2 A(l)——2+ _2 (D56)
Cs:[z=iy;R>y>0], andC,:[z=e€e'’; w/2> 6>0]. By ap- x 20 24 2 12

plying the Cauchy residue theorem to the abdy®) along

the contourC=C,+C,+C5+C, in the limit e—~0 andR Next we proceed to compute the integraf? in Eq.

—, we directly obtain relation(D47) betweenA") and  (D40). For this purpose, consider the integrals
AV Next we demonstrate E4D48) by differentiating the

standard integral representation of théunction. This yields (2) tdu 1 * 1
(t)= -1 In(u)+ ——=In(u)
dr " ou V1+u? u Ji+u
— =J dxIn(x)e *=—y, (D49) (D57)
dz =1 0
2 AR (t) = ftdu 1 11+f du 1
d<r = - - .
( ) f dxIn?(x)e . (D50) Ji+u? t U J1+0?
(D58)
We then rewrite Eq(D50) as Fort=1, AP(t=1)=A is the desired integral, whereas

AP(t=1)=A®=In(2) by Eq. (D46). Further, by Egs.

d’r 1 1 (D57) and (D58), dA®)(t)/dt= —In(t)/t, anddAG)(t)/dt=
- — —X__ 2 2 ’ X ’ X
(dzz) ) fo dx(e D)In"(x)+ fo dxIn(x) —1k. By integrating these relations over
7=
e X2 (2)— p(2) '“ﬂ
+ [ dxe XIn?(x), (D51) A=A+ ——, (D59)
1
and integrate by parts the first integridy writing (e > AR =AR(t)+In(t) (D60)

—1)dx=d(1—e *—Xx), etc] as well as the last integrlby
writing e *dx=d(—e ), etc]. After few elementary inte- for any t>0. By Eqgs.(D57)—(D60), with t=¢e—0,
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. ( €)
AP = |im f In( u)+ , (D61
X e—0 V
A= lim f +|n(e)1. (D62)
X e—0 V
To proceed, it is useful to form the difference
_ A2 1 (3)72
A=A _E[AX 1°. (D63
Here, using Eqs(D61) and (D62), we find
f " du— f v ! (D64)
= U— | —|1-—|.
o uyl+u?lowv V1+v?

The integral over here can be done by changing-t with
t=In[(y1+v?+1)/2]. This reduces EqD64) to

1 JVi+v2+1
du In . (D65)
uy1+u? 2

By changing variables via—t with t=In[(y1+u?+1)/2],
we eventually obtaim in a form involving a well-known
integral,

= 1fwd t D66
" 2)o tet— (D66
By Egs.(D66), (D63), and(D46), we obtain
2 In?(2)
@_"
A=t —— (D67)

Equations(D38), (D46), (D56), and (D67) yield our final
result for the constam,, anticipated in Eq(D34).

Next we compute the integrdl{?) in Eq. (D44). For this
purpose, consider the integral

AP)(t)= du \/_zln(ux/1+u2)
J du In(u\/1+u ). (D68

Fort=1, A(t=1)=A? is the desired integral. It is easy
to show, along the lines we used to derive E@R59) and
(D60), that

AR~ AR (1) +

(D69)

[IntV1+2))* [Iny2]?
2 2

for any t>0. Thus, by Eqs(D68) and (D69), with t=¢€

—0,
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AP =lim f du In(u\/1+u7)+
e—0
In?(2)
—— (D70)
Next, by Eqs.(D70) and(D61),
In?(2
-2 [ ooy T
(D71

By the change of variables—t, with u=e*—1, we find
AP — APD=g +5,-1In%2)/8, whereS, andS, are two well
known integrals, S,=/gdtt/(e'+1)=n?/12, and S,
= [dtt/(e?'—1)=F[gdxX (e*—1)=%(7?/6). Thus

72 In3(2)
A§2>—A;2>=§ ——5 (D72
By Egs.(D72) and(D67),
572 31n%(2)
(2)—
AD=—1 5 (D73

Equations(D42), (D46), (D56), and (D73) yield our final
result for the constam, anticipated in Eq(D36).

We now proceed to discuss calculations yielding the val-
ues of the numerical constanB, and B, quoted in Egs.
(D35 and(D37). For By, by (D15) and(B8), we obtain

fdw
0

By using Eq.(D60), i.e., A®)(t)=A® —In(t)=In(2)—In(t),
we find

AP md@ (AP

w/p(w)

By= W

(D74)

In(2)+In(w+/p(w))

= 71-d
3| | [ow wpW)
_fwdwln(2)+ln(w) (D75
€ w e—0

Next, in the first integral above, we change framto z
=w+p(w)=2 sin(w/2), whereas in the second integral we
change the variable into z. After rearranging the expression
thus obtained, we find

5 —Fdz{ 1 _1] In(2)+In(z)
o V1= (212)? z
_dezln(Z)wZLln(z).

2

(D76)

For convenience, we change variables giax=2/2, and
thus obtain
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2
B,=B®+21In(2)B@— @—[m(z)]nn(w)]

31In%(2)
+ : (D77)
2
with
1
B<1>:f dx —1|In(x) (D79
0 1-x°
and
) J ' !
B®= | dx -1/ D79
0 | J1-x? (b79

A similar formula can be derived for the constd‘ﬂ;=§z
+ B, introduced in Sec. D 2 of this Appendix. By Eq©20)

and (D30)), we find, forB,,

y+In(u /p(u))

w 7 y+In(u)
du du——
ff ! uyp(u) .L . u ]

B,=

e—0

(D80)

By treating Eq.(D80) in exactly the same way we treated

above Eq(D75), we eventually find

In%(2) In?(r)

2
(D8Y)

B,=BMW+[In(2)+ y]B®+

+yIn(2)—

—vlIn().

To complete our calculation, we need the integ&{¥ and
B® in Egs.(D78) and(D79). B® [Eq. (D79)] can be cal-
culated by elementary integration methods, yielding
B()=In(2). (D82)
On the other hand, the integrB(?) [Eq. (D78)] is not el-
ementary. As detailed below, we find
2 2
7= In“(2)
(€ J——
B 247 2

(D83)

The values oB, andB,=B,+ B, quoted in Eqs(D35) and
(D37), directly follow from Eqgs.(D77), (D81), (D82), and

(D83). It remains to outline the calculation yielding the value
of B® in Eq. (D83). It is obtained by relating the integral

B™ [Eq.(D78)] to the integralA{?) [Eq. (D40)] computed in
Eq. (D67). We find that

2
o
2
BW=— §+A§ ), (D84)

To derive relationD84), we apply the Cauchy residue theo-

rem to the complex functiofi(z) =In(z)/zy1—2z? along the
same contour that has been used before to derive [E4)
[see the text following EqD48)]. This yields the relation
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S T S
. X mn(x)_ 8 T \mn(u) ¢(6)1

(D85)

where ¢(€)—0 ase—0. Equation(D85) is identical to

fldx
c X

2

1 T
—1lln(x)=—§+

1-x?

=du

1
€ T V1+ U2
In?(€)

+ 5 + ¢(e€).

In(u)

(D86)

By recalling here Eq(D61) and taking the limitt— 0 in Eq.
(D86), we eventually obtain relatiofD84) used to compute

B,
APPENDIX E: CALCULATION OF g¢‘®(r,na)

In this appendix, we will outline the evaluation of Eq.
(3.25 for g®)(r,na)=g®(x,z,na). We begin with expres-
sion (3.17) for g®(r,na). We assume the continuum limit
A,—0, and integrate oveq,, to obtain

@(r na)—ZIZJAXX*dtJW y 1-cognu)
gin “Jo o tJo TtytZ+u?p(u)

X [1—cog tx/x* )ef(tz/z*)\/tz+ uzp(u)]_

(ED
This expression can now be used to evaluate various limits.
1. x>x* and z=0
From Eqg.(E1), we have

~dt
9@ (x,0na)=2l 5]“ — SH(D[L—cogtx/x*)],
0

(E2)
whereS,(t), defined in Eq(3.23), is proportional to 1/for

t>1. Thus the integral in EqE?2) is convergent at largg
and we can take the continuum limit,—occ. Thus we have

»dt 1dt
g®(x,0na)=2I 5f + Sn(D[1—cogtx/x*)]=2l ﬁf T
0 0

, [*dt
><[1—cos(tx/x*)]Sn(t)JrZqul s

X[1—cogtx/x*)]S,(t) (E3)

1dt
=21 In(x/x*)+ y]&(0)+2|3f — [1—cogtx/x*)]
0

2 wdt *
><[sn(t)—31(0)]+2|uf1 ~ (1= cogt/x*)1Sy(v).
(E4)

The contributions from the cax(x*) terms in the integrals
in Eq. (E4) vanish wherx/x*>1, leaving
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g®(x,0na)=212S,(0)In(Dx/x*), (E5)

where

D=7 S e (A=), (E)

with ¢ andc{?(A,) given, respectively, by Eq$C5) and
(Co6).

2.x=0,z2>7*

Again, we will simplify our discussion by taking the limit
A,—o0 and integrating oveg, in Eq. (3.25 to obtain

g(3)(02 na):2|2fxdtJ'wduLmu)
w “Jo " Jo T ttZ+uZp(u)

X[1_ef(tz/z*)\/t2+u2p(u)]_ (E7)

Changing variables vig=s\u’p(u), we obtain

71—cognu

o

g®(0,z,na)=2I2 J[(z/z*)uzp(u)],

(E8)

where J(v) is defined in Eq.(D22). Next, using J(v)
=1In(2e")+3(v) [Eq. (D23)], we obtain

= 1-—cognu)
(3) —9]2 * _
9®0z,na)=2I17[In(z/z )+7+In2]fodu JZp(0)
1-cognu)
212 | du——=—="In[u?
2 T MR
w 1 cognu
+2|2 J 2/z* )u?p(u)].
\/sz_ [( p(u)]

(E9

In the limit z/z* — o, J[(z/z*)u?p(u)] tends to zero for all
u, and we obtain

9®(0,z,na)=212S,(0)In(E,z/Z*), (E10
where
E, = 2eex "auls CS{ )In[u W1l
(E1D

APPENDIX F: INTERPLANE CORRELATIONS WHEN
VY#£0

In this appendix, we will derive Eq3.46 from expres-
sion (3.41) for S(r,na). We begin by looking at the linear
term inVYin S(r,a),
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S(r,a)=V“/2TJ d?r,

« <efiqoug(o)(eiqo[ug(rl)7u%(r1)]eiq0aazu;(r1) +c.c)

Xeiqou%(r)>sc (Fl)
V[ iqoluz(r) —u2(rp)] gidolu2(ry) —ud(0)]
_—T d rl<e z z e z z
i00adul(ry) \a 2 igolul(n) +ul(ry]
X @90 ) got o | dor (9ot
« eiqo[ug(rl)+ug(0)]ei%aﬁz“§(r1)>sc, (F2

where the subscrigb C indicates that the averages are to be
evaluated with respect to the sliding columnar Hamiltonian,
HSC of Eq. (2.19. Since H>C is quadratic inuf(r) and
ury‘(r), the averages in this equation can be performed ex-
actly, andS,(r,a) can be expressed as an exponential of
correlations functions afi;(r) andazu;(r). The second term

in Eq. (F2) has terms in the exponential proportional to
—qg3([ul(r)]?) for n=0 and 1, which diverge in thermody-
namic limit and cause the exponential to vanish. Thus only
the first term of Eq(F2) survives, and we have

VU
S(r,a)= ﬁf erle—q’(rl‘I’), (F3)

where
D(rq,1)=33([UX(r,ry) +U(r1,0)+ag,u(ry)?])
=g@(r—ry,0+9@(r,,0+9?(r,a)+g®(0,a)

—9®(r—ry,a2)—g®@(ry,a)+3a%([duy(r)]%)

+a(auy(r[uy(r,r) —ud(r;,01); (F4)
hereg®®(r,na) is defined in Eq(3.18, and
up(r,r)=ug(r) —uy(r'). (F5)

This expression is quite complex. However, it simplifies con-
siderably if we seK,=0 andB,,=0. Theng‘®(r,a)=0,
and all cross terms inj(r) anduy(r’) vanish. In this case,

D(ry,n)=g@(r—ry+g®(ry)+w,, (F6)

where g@(r)=g®(r,0) [see Eq. (3.18],
=qga*((du))?)/2.

The generalization of Eqs(F3) and (F4) to n>1 is
straightforward. The leading contribution 8fr,na) is

and Wy

S(r,na)=

VU n
ﬁ) jdzrl_“dzrnefcp(rl,...,rn,r)’ (F7)

where

<(§i) rm,rm+1)+a§n‘, Juy ))2>,
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wherery,=0 andr,, {=r. This function can be expressed in A
terms of the reduced correlation functiom$?(r,n) for En(X):_f
uy(r) and correlation functions involvin@zu;‘(r). In gen-
eral, it will have terms connecting all pairs of layers, and the X cognu](1—cogtx/x*]). (GD
evaluation ofS(r,na) is highly nontrivial. ) ) ) i

We can obtain a useful approximation by settifig=0 to We isolate the Ix d_|vergence by adding ano_l subtracting
eliminate allg®(r,na) for n#0, and by setting ;=0 to \/uzp(u) under theu integral. This procedure yields
eliminate couplings between] and uy'. Even in this ap- En(X) = —JoIn[CX(A ) |X|/x*] (G2
proximation, couplings between distant layers arise from . _
(a,u(r)a,ull(r')). This function, however, dies off rapidly for x>x*.In the above expressiofy(A,) =€"By(A,) with
with n—m, and we will set it equal to zero wham#m. [In B, (A,) = A, x*eBn(A,
another publicatiof14], we use a variational procedure to v
calculateS(r,na). The form ofS(r,na) evaluated with this B _ [ _t In(V) _

. - ; . Bn(Ax) 1], (G3)

procedure is very similar to that obtained using the above 0 t] Jy
approximationd. With these approximations,

dt (=
—f duvt®+u?p(u)

tJo

and
n
_ 2 T
P(ry, ... 'rn'r)_qomzo 9@ (rm=rme)+nW, (F9 Jn(t)= fo duyt?+ u?p(u)cosnu. (G4)
and The z>z*, x=0 limit is obtained in a similar way from
T/”” Axx*dt ko
S(r.na)= o= d?rq---d?r,Sy(ry) En(z)=—j0 TJO duyt?+u?p(u)cod nu]
XSy(r{—ry)---Sy(r,—r), F10 Z
Sa(f=rz) - Slf =) (F10 X 1—exp{—z—*t\/tz+u7p(u) ) (GH)
where
< 00" u”(0)1> (F11 We find that
S,(r)= (el F11)
En(z)=—J,In[CR(A)|2]/Zz*] (G6)

is the in-plane density correlation function, and where o
scales logarithmically for z>z*, where C}(A,)

Vu=yug~Wy, (F12 =B, (A)eCnM,
Fourier transforming this equation, we obtain Eg.46) in — 1 |1-F,(y) ©  F.y)
the text, C,ﬁ:f dy —— _j dy G7)
y 1 y
APPENDIX G: INTERACTION ENERGY BETWEEN EDGE and

DISLOCATIONS

1 (=
In this appendix, we evaluate the interaction energy F“(y):J_nJO ducognu) Jup(u)ex —yu*p(u)].
E(r,na) between two dislocations with separation
=(r,na) in the limits x>x*, z=0 andz>Zz*, x=0. To  Note thatC}*(A,) diverge withA,, and thusE,(r) does
obtain thex>x*, z=0 limit, we must evaluate not have a well-defined ,— o limit.
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