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Structural properties of the sliding columnar phase in layered liquid crystalline systems

L. Golubović,1,* T. C. Lubensky,2 and C. S. O’Hern2,†

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

~Received 9 March 2000!

Under appropriate conditions, mixtures of cationic and neutral lipids and DNA in water condense into
complexes in which DNA strands form local two-dimensional~2D! smectic lattices intercalated between lipid
bilayer membranes in a lamellar stack. These lamellar DNA-cationic-lipid complexes can in principle exhibit
a variety of equilibrium phases, including a columnar phase in which parallel DNA strands form a 2D lattice,
a nematic lamellar phase in which DNA strands align along a common direction but exhibit no long-range
positional order, and a possible new intermediate phase, the sliding columnar~SC! phase, characterized by a
vanishing shear modulus for relative displacement of DNA lattices but a nonvanishing modulus for compress-
ing these lattices. We develop a model capable of describing all phases and transitions among them and use it
to calculate structural properties of the sliding columnar phase. We calculate displacement and density corre-
lation functions and x-ray scattering intensities in this phase and show, in particular, that density correlations
within a layer have an unusual exp(2const3 ln2r) dependence on separationr. We investigate the stability of
the SC phase with respect to shear couplings leading to the columnar phase and dislocation unbinding leading
to the lamellar nematic phase. For models with interactions only between nearest neighbor planes, we conclude
that the SC phase is not thermodynamically stable. Correlation functions in the nematic lamellar phase,
however, exhibit SC behavior over a range of length scales.

PACS number~s!: 87.15.2v, 61.30.Jf, 61.30.Cz, 64.70.Md
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I. INTRODUCTION

The search for nonviral vectors for transport of DN
across cell and nuclear membranes in gene therapy has l
the study of DNA-cationic-lipid complexes@1#. DNA and
mixtures of neutral~zwitterionic! and cationic lipids dis-
persed in water self-assemble into spheroidal complexes
can attain micron sizes near the isoelectric point, where th
is compensation between DNA and lipid charge. Fluor
cence tagging of DNA and lipids indicate@2# that both spe-
cies are dispersed uniformly throughout the complex
X-ray scattering experiments reveal two bulk structu
@2–5# for complexes with close association between DN
and lipids. When helper lipids that favor spontaneous cur
ture of lipid membranes or that decrease membrane ch
density are added, a hexagonal inverted micellar struc
forms with DNA molecules captured in the water holes
the hexagonal lattice@5#. When only neutral and cationi
lipids are used, DNA is intercalated in galleries betwe
lamellae of a lamellar lyotropic phase formed by the lipi
@2–4#, as depicted schematically in Fig. 1. This paper w
investigate the possible equilibrium phases of these lame
DNA lipid complexes. It will focus primarily on the proper
ties of one phase, the sliding columnar phase@6,7#, charac-
terized by strong orientational but weak positional corre
tion between DNA strands in neighboring galleries.

DNA molecules are semiflexible polymers that when co
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fined to a two-dimensional plane tend to form locally align
structures with a preferred intermolecular separation that
be modeled as two-dimensional smectic liquid cryst
@8–10#. Thus lamellar DNA-lipid complexes can be viewe
as a three-dimensional~3D! stack of 2D smectics as depicte
in Fig. 1. This figure establishes the coordinate conventi
that will be used throughout this paper. DNA strands ali
on average along thex direction, and the normal to lamella
is along they axis. The normal to the 2D smectic lattices
along thez direction. The average spacing between lamel

:

y,
:

FIG. 1. Schematic representation of lamellar DNA-cationic-lip
complexes. Parallel strands of DNA form 2D smectic lattices w
lattice spacingd in galleries between flat lipid bilayer membrane
with spacinga. DNA strands are aligned parallel to thex axis, and
the y axis is normal to the lipid planes. The height of the midpo
of the nth membrane above a pointr5(x,z) in the xz plane is
Hmem

n (r ). The nth DNA gallery with heightHDNA
n (r ) lies between

the nth and the (n11)st membrane@see Eqs.~2.1! and ~2.2!#.
1069 ©2000 The American Physical Society
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FIG. 2. Schematic representation of structure~top! and x-ray scattering profiles~bottom! of ~a! the columnar phase,~b! the sliding
columnar phase, and~c! the nematic lamellar phase. These figures assume that the preferred low-temperature phase is the
rectangular columnar phase. Modifications for a rectangular columnar phase are obvious. The indexing scheme for the x-ray intens
standard one for a centered rectangular lattice. There are Bragg peaks in the columnar phase atG5(0,m1k0/2,m2q0) @denoted in the figure
as (m1 ,m2), wherem11m2 is even#. In the columnar phase, DNA strands form a 2D lattice with true long-range order and associated
Bragg peaks. In the sliding columnar and nematic lamellar phases, there are power-law quasi-Bragg peaks at (2m1,0) and diffuse peaks a
(m1 ,m2) for m1Þ0. Dislocations destroy 2D smecticlike order in the nematic lamellar phase to produce more diffuse (m1 ,m2) peaks than
in the sliding columnar phase. If interlayer couplings are weak and thermal fluctuations sufficiently strong, the (6m,1) peaks may merge to
produce a diffuse peak centered at the rectangular-lattice~0,1! position in the sliding columnar and nematic lamellar phases. The labelin
peaks in this figure, which follows conventional (x,y,z) ordering for the our choice of axes, is the inverse of that of Ref.@4#. Thus (m1 ,m2)
@e.g., (61,1)# here corresponds to (m2 ,m1) @e.g., (1,61)# in Ref. @4#.
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is a, and that between DNA strands isd. The wave numbers
associated with these lengths are, respectively,k052p/a
andq052p/d.

If the lamellae are assumed not to be disrupted by dis
cations or rips, then the following possible equilibrium
phases are easily identified:

Columnar (C) phase. In this phase, DNA strands are
aligned on average along thex axis, and their centers occup
positions on a 2D crystal lattice in theyz plane. Since the
standard Coulomb repulsion between DNA strands fav
staggering of smectic lattices in neighboring galleries, t
columnar lattice is normally expected to be centered rect
gular as observed in experiments on complexes in wh
membranes are in theLb8 phase rather than the more diso
deredLa phase@4#. We will, however, consider both simple
rectangular and centered rectangular columnar lattices
simple rectangular lattice may occur if the effective intera
tion between DNA strands indifferentgalleries is attractive,
as is the case between DNA strands in solutions with po
valent salts@11#. The columnar phase is favored at low tem
perature. It has the same symmetry as a columnar disc
liquid crystal phase@12#. It is characterized by a 2D elasti
energy with a nonvanishing shear modulus for relative d
placements of DNA lattices in different galleries and nonv
nishing moduli for compression of both lamellae and DN
smectic lattices. It has long-range positional order
the 2D yz plane and associated Bragg peaks in its x-r
scattering profile at reciprocal-lattice vectorsGm1 ,m2
-
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e
n-
h

A
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-
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-
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y

5@0,m1k0/2,m2q0#[(m1 ,m2), wherem1 and m2 are inte-
gers andm1 is even for a simple rectangular lattice andm1
1m2 is even for a centered rectangular lattice as shown
Fig. 2.

Nematic lamellar (NL) phase. In this phase, the periodic
positional order of the columnar phase is destroyed by
locations in the DNA smectic lattices, but the long-ran
orientational order of DNA strands is maintained. This pha
is characterized by a long-wavelength elastic energy wit
lamellar compression modulus, an anisotropic lamellar be
ing modulus, and orientational rigidities~Frank elastic con-
stants! opposing spatially dependent variation of DNA alig
ment direction. Both the shear modulus for relati
displacement of DNA lattices in different galleries and t
compression modulus for DNA lattices vanish, and there
exponential decay of DNA positional correlations. The x-r
scattering profile of the NL phase exhibits lamellar pow
law (2l ,0) peaks atG2l ,05(0,lk0 ,0). If columnar-phase po
sitional correlations are well developed, it will also exhib
Lorentzian peaks atGm1 ,m2

for m2Þ0, as depicted in Fig. 2
If thermal fluctuations are sufficiently strong that these c
relations are not well developed in centered rectangular
tems, then the x-ray scattering profile could exhibit a bro
~0,1! peak in the vicinity of (0,0,q0) rather than the expecte
pair of ~1,1! and (21,1) peaks. In this case, the positions
the x-ray scattering peaks would appear to indicate a
dency to form a simple rectangular rather than the grou
state centered rectangular structure.

Isotropic lamellar (IL) phase. In this phase, orientationa
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as well as positional order of DNA lattices is lost. Macr
scopically this phase is identical to a multicomponent isot
pic lamellar phase. It is included for completeness, and
not be considered further in this paper.

Decoupled 2D smectic (DS) phase. This phase occurs
only if there are absolutely no interactions between DN
lattices in neighboring galleries. Its elasticity and corre
tions are thus those of independent 2D smectic lattices. S
there are always interactions between galleries, this ph
will not exist in real systems. It is, however, a useful limit
consider since systems with weak coupling between lay
will behave as though they are decoupled at sufficiently sh
length scales.

In addition to the above phases, which are straightforw
to identify, there is the possibility of another phase with u
usual properties.

Sliding columnar (SC) phase@6,7#. This phase has prop
erties intermediate between those of the columnar and la
lar nematic phases. Its elastic energy is distinguished f
that of the NL phase by the presence of a nonvanish
modulus for compression of DNA lattices. In-plane smec
correlations die off as exp(2const3 ln2r) as a function of
separationr rather than exponentially as in the NL phas
Correlations between smectic lattices in different galler
die off exponentially with layer-number difference. Th
x-ray structure factor exhibits power-law lamellar (0,lk0,0)
peaks and well defined DNA (m1 ,m2) peaks withm2Þ0
that are sharper than the corresponding Lorentzian peak
the NL phase, as depicted in Fig. 2. As in the NL phase,~1,1!
and (21,1) peaks may merge to produce a single~0,1! DNA
peak if thermal fluctuations are sufficiently strong.

Rather stringent conditions must be met before the
phase can be thermodynamically stable. Thermal fluctuat
must be strong enough to destroy the interlayer shear
pling present in the columnar phase but not so strong
dislocation proliferation destroys the smectic compressibi
to create a nematic lamellar phase. The SC phase is s
only for temperaturesT lying above a decoupling tempera
ture Td at which the C phase becomes unstable and belo
Kosterlitz-Thouless~KT! melting temperatureTKT above
which the NL phase becomes stable. Thus a necessary
dition for the SC phase to be stable isTd,TKT . In Sec. IV,
we will show that this condition is violated for the neare
neighbor models we consider here. Elsewhere@13,14#, we
show that appropriately chosen interactions between fur
neighbor planes can stabilize the SC phase.

The focus of the paper is the rather unusual propertie
the SC phase. We will, therefore, assume throughout mos
the paper that the SC phase does exist. This approac
justified because it can under appropriate conditions be
equilibrium phase as discussed in Ref.@13# and because eve
if it is not thermodynamically stable, there is a range
length scales over which correlations functions will exhi
SC behavior.

This paper is composed of six sections, of which this
the first, and seven appendixes, which mostly present m
ematical details. Section II derives the Hamiltonians for
columnar, sliding columnar, and nematic lamellar phas
based on a model in which the dominant interactions
couplings between each DNA lattice and the two membra
on either side of it. Section III presents the correlation fun
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tions for the SC phase, including x-ray scattering intensit
Section IV addresses the stability of the SC phase. It ca
latesTd , and it derives general expressions for the inter
tion between dislocations before calculatingTKT . Section V
presents a discussion of the various important length sca
Finally, Sec. VI provides an overview of results. Appendix
presents details of the derivation of the Hamiltonians in S
II. Appendixes B–F provide details of the calculations
various SC phase correlations functions, and Appendix
presents details of calculations of interactions between di
cations.

II. MODEL FOR LAMELLAR PHASES OF DNA-LIPID
COMPLEXES

A. Definition of variables

As depicted in Fig. 1, lamellar phases of DNA-lipid com
plexes consist of a periodic stack of planar lipid bilay
membranes with spacinga separated by galleries intercalate
with DNA strands that form a local 2D smectic lattice wi
preferred spacingd. Since our primary interest is in the na
ture of possible ordering of the DNA strands, we will assum
that the lipid membranes are free of defects such as disl
tions or focal conic structures that destroy their integrity. W
can, therefore, specify a layer by its integer layer numben,
and we can specify positions in thexz plane by the vector
r5(x,z). We take the equilibrium height of the midpoint o
bilayer membranen be na. The height of membranen at
position r is then

Hmem
n ~r !5na1hn~r !, ~2.1!

wherehn(r ) is the Lagrangian height variable@15# measur-
ing the displacement of layern from its ideal height. Thenth
DNA lattice lies between membranesn and n11. Its equi-
librium height is, therefore, (n1 1

2 )a, and its height at posi-
tion r is

HDNA
n ~r !5~n1 1

2 !a1uy
n~r !, ~2.2!

whereuy
n(r ) measure deviations from equilibrium height.

The DNA lattice in layern can be described in terms of
Fourier expansion of its density. It is important to keep tra
of the relative phases of mass-density waves in adjacent
ers. In an ideal columnar lattice, the phase of the first ma
density wave in layern is simply q0(z2zn), where

q052p/d, ~2.3!

andzn specifies the preferred position of lattices in differe
galleries. In a rectangular lattice,zn50, and in a centered
rectangular lattice,zn5nd/2. Phase changes at positionr
relative to the above ideal phases are produced by lo
translations described by the Eulerian displacement varia
uz

n(r ). Thus the DNA density-wave expansion in layern is

rDNA
n ~r !5(

k
rnk~r !eikq0[z2zn2uz

n(r )] . ~2.4!

If each DNA lattice is perfect with identical rods of linea
densityl and separationd, thenrnk(r )5l/d for everyn and
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k. Thermal fluctuations will lead to reductions inrnk that are
larger for largerk. ThusrDNA

n (x) can be approximated by

rDNA
n ~x!'r01ceiq0[z2zn2uz

n(r )]1c.c., ~2.5!

where c, assumed to be independent ofn, is the complex
amplitude of the first nontrivial density wave.

The total mass density of DNA strands at positionsx
5(x,y,z)[(r ,z) is

rDNA~x!5(
nk

rnk~r !eikq0[z2zn2uz
n(r )] f DNA

k

3@y2~n1 1
2 !a2uy

n~r !#, ~2.6!

where f DNA
k (y) is the form factor along the layer normal fo

a DNA mass-density wave of wave numberkq0. If the DNA
stands are lines with no width, thef DNA

k (y)5d(y). If the
strands are modeled as cylinders of radiusr DNA , then the
Fourier transform off DNA

k (y) is @3#

f DNA
k ~qy!5

2J1~Aqy
21k2q0

2 r DNA!

Aqy
21k2q0

2 r DNA

, ~2.7!

whereJ1(x) is the Bessel function of order 1. The membra
density is

rmem~x!5(
n

rL
0 f mem@y2na2hn~r !#, ~2.8!

whererL
0 is the area density of the lipid, andf mem(y) is the

lipid membrane form factor, which typically is equal to 1/w
for 2w/2,y,w/2 wherew is the membrane width. X-ray
scattering experiments probe^r(q)r(2q)&, wherer(q) is
the Fourier transform of a linear combination ofrDNA(x) and
rmem(x) @see Sec. III D#.

B. Hamiltonian for coupled DNA-lipid layers

We are now in a position to derive the Hamiltonian d
scribing elastic fluctuations of lamellar DNA-lipid com
plexes. Our goal is to develop the simplest model consis
with symmetry. We begin with individual membranes a
DNA layers. They are characterized by layer bending en
gies, which can be expressed as

H bend5 1
2 (

n
aE d2r $K3d@~]x

21]z
2!hn#2

1K2d@~]x
2uy

n!21~]x
2uz

n!2#%, ~2.9!

whereaK3d5kmem is the bending rigidity of the lipid mem
branes, andadK2d5kDNA is the bending rigidity of an indi-
vidual DNA strand. We adopt a convention here with a fa
tor of the layer spacinga multiplying sums overn to
facilitate the continuum limit:(a*d2r→*d3x. Interactions
between DNA strands lead to a preferred separation betw
strands within a layer and to a compressional elastic ene
characterized by a modulusB2d , for changing this separa
tion. There is also a preferred separation between a g
DNA layer and the two lipid membranes above and below
Harmonic deviations from this separation are characteri
-

nt

r-

-

en
y,

en
t.
d

by a modulusB3d . Changing the distance between mem
branes on either side of a DNA layer will lead to an expa
sion or a compression of its DNA smectic lattice, which
described by a coupling with strengthBuh between in-plane
strain and membrane separation. Combining all of these
fects into a single compression energy, we obtain

H com5(
n

aE d2r $ 1
2 B2d~uzz

n !21~Buh /a!uzz
n ~hn112hn!

1~B3d /a2!@~hn112uy
n!21~uy

n2hn!2#%, ~2.10!

where

uzz
n 5]zuz

n2@~]xuz
n!21~]zuz

n!2#/2 ~2.11!

is the nonlinear 2D Eulerian strain and where factors ofa21

were introduced to facilitate the continuum limit, e.g
(hn112hn)/a;]yh(x). There are additional compression
energies involving interactions proportional to (hn11

2hn)2, (uy
n112uy

n)2, (uzz
n112uzz

n )2, and other further neigh-
bor terms. These are smaller than those considered in
~2.10!, and we will neglect them. They are, however, need
to achieveTd,TKT and a stable SC phase@13#.

Neighboring DNA strands within a gallery prefer to b
parallel. This leads to a Frank-like orientational energy

H orien5 1
2 (

n
aE d2rK z~]zu

n!2, ~2.12!

whereun(r )']xuz
n(r ) is the angle that thenth DNA lattice

at r makes with thex axis. In all but the NL phase, this
orientational interaction is subdominant to those in Eq.~2.9!,
and we will ignore it.

Finally, there are interactions between DNA lattices
neighboring galleries that favor parallel alignment and s
tial registry of the lattices. These interactions are descri
by a sum of layer-coupling Hamiltonians

H int5(
n

~H n
u1H n

u!. ~2.13!

The angular coupling is

H n
u52VuE d2r cos@2~un2un11!#. ~2.14!

In all but the isotropic lamellar phase, there is long-ran
angular order, and we can replace(nH n

u by

H rot5 1
2 Ky(

n
aE d2r S ]xuz

n112]xuz
n

a D 2

, ~2.15!

where Ky'4aVue24^(un)2&. The interaction H n
u in Eq.

~2.13!, favoring spatial registry, arises from interactions b
tween DNA densities in Eq.~2.5!. The phasesq0zn @Eq.
~2.4!# are chosen so that energy is minimized when the
maining phase,bn(r )5q0@z2uz

n(r )#, of mass-density waves
in neighboring DNA lattices are equal at the points of clos
approach of the lattices~Fig. 3!. The point atrn11 in layer
n11 closest to the point atrn in layer n lies along the nor-
mal Nn(r )'(2]xuy

n ,1,2]zuy
n). Thus rn115rn1drn11,
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wheredrn115aN''(2a]xuy
n ,0,2a]zuy

n) whereN' is the
projection ofN onto thexz plane. Energy is minimized whe
bn11(rn11)5q0(z2a]zuy

n2uz
n11) is equal tobn(rn). The

resulting energy is

H n
u52VuE d2r cos@q0~uz

n112uz
n1a]zuy

n!#, ~2.16!

where Vu is proportional to the squareucu2 of the mass-
density-wave amplitude. As required, this energy is invari
with respect to spatially uniform translations described by
n- andr -independent displacement ofuz

n(r ). It is also invari-
ant to harmonic order with respect to uniform rotations,
which uz

n112uz
n52a]zuy

n . The predominant interaction be
tween DNA in neighboring strands is electrostatic, and
expectVu;(le

2/d)e22pa/d, wherele is the charge per uni
length on a DNA strand.

To summarize, our complete model Hamiltonian coupli
membrane height displacementshn and DNA lattice dis-
placementsuy

n anduz
n is thus

H tot5H bend1H com1H int, ~2.17!

with entries defined by Eqs.~2.9!, ~2.10!, and~2.13!–~2.16!.

1. Effective Hamiltonian for DNA displacements

Though we will discuss membrane height fluctuatio
our primary focus will be on properties of the DNA lattice
It is, therefore, useful to integrate out the membrane he
variableshn(r ) to obtain an effective Hamiltonian for DNA
displacements only. This operation is carried out in App
dix A. The long wavelength result is

HDNA
tot 5H SC1H u ~2.18!

where H u5(nH n
u and H SC is the sliding phase Hamil

tonian,

FIG. 3. A sequence of tilted and bent membranes. Interact
favor equality of the shifted phase,bn(r )5q0@z2un(r )#, in neigh-
boring layers at points of closest approach, i.e., they favorbn(rn)
5bn11(rn11) wherern112rn5aN'(rn), whereN' is the projec-
tion of the membrane layer normal onto theyz plane.
t
n

e

,

ht

-

H SC5 1
2 (

n
aE d2r @B2d~uzz

n !21K2d~]x
2uz

n!2#

1 1
2 (

n
aE d2r @~B3d /a2!~uy

n112uy
n!2

1Kab~]a]buy
n!2#1 1

2 (
n

aE d2r @2Bzz

3@~uzz
n112uzz

n !/a#212~Buh /a!uzz
n ~uy

n112uy
n21!#

2 1
2 (

n
aE d2rK y@~]xuz

n112]xuz
n!/a#2, ~2.19!

where

Bzz5
Buh

2

4B3d
, ~2.20!

the summation convention ona5x,z and b5x,z is under-
stood, and the bending-rigidity tensor is

Kab5S Kxx Kxz

Kzx KzzD 5S K3d1K2d K3d

K3d K3d
D . ~2.21!

Note that integrating outhn creates interactions betwee
nearest-neighbor and next-nearest-neighboruz

n and uy
n dis-

placements not present in the original model of Eq.~2.17!.
These interactions, however, have particular ratios de
mined by the parameters inH tot. Of particular importance to
us in what follows is the fixed relations between the coe
cients of (uy

n112uy
n)2, (uzz

n112uzz
n )2, anduzz

n (uy
n112uy

n21).
In a more general model with further-neighbor interactio
the simple relation of Eq.~2.20! amongBzz, Buh , andB3d
would not hold.

Using HDNA
tot , we can construct the long-waveleng

Hamiltonian for each of the phases listed in the introduct
as detailed in the following.

2. Columnar phase

The columnar crystal is characterized by a strong c
pling of displacements in different layers. Its elastic Ham
tonian can be obtained by expanding the cosine inH n

u @Eq.
~2.16!# about one of its minima. Performing this operatio
taking the continuum limit, and retaining only the lowe
order terms in a gradient expansion, we obtain the fami
elastic Hamiltonian for a rectangular columnar lattice@16#:

H C5 1
2 E d3x@B2duzz

2 1B3duyy
2 1Buhuzzuyy1Byzuyz

2 #

1E d3x@K2d~]x
2uz!

21~K2d1K3d!~]x
2uy!2#,

~2.22!

where x5(r ,na), uzz(x)5uzz
n5y/a(r ), and Byz'Vuq0

2a2.
Note that the shear elastic modulusByz arises fromH n

u and
is zero whenVu is zero. The cross compressionBuh term
arises from theuzz

n (uy
n112uy

n) term in HDNA
tot , which was

generated by the interaction ofuzz
n with the membrane heigh

field hn.

s
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3. Sliding columnar phase

The sliding columnar phase is characterized by a van
ing shear modulusByz for the relative displacement of DNA
lattices. Its dominant fluctuations are, therefore, described
the HamiltonianH SC of Eq. ~2.19! obtained by settingVu

50 in HDNA
tot . TheVu coupling is irrelevant when the slidin

phase is stable as detailed in the following@see Sec. IV#.

4. Nematic lamellar phase

Positional couplings between layers and the smectic c
pression modulusB2d both vanish in the nematic lamella
phase, and

H NL5 1
2 E d3x@Kx~]xu!21Ky~]yu!21Kz~]zu!2#

1 1
2 E d3x@B3duyy

2 1Kab~]a]auy!2#, ~2.23!

whereKx5K2d andKz is a Frank elastic constant introduce
in Eq. ~2.12!.

III. CORRELATIONS IN THE SLIDING COLUMNAR
PHASE

In Sec. II, we derived a general Hamiltonian capable
describing the phases of lamellar DNA-lipid complexes.
this section, we will investigate correlations in the slidin
columnar phase. The most unusual correlations in the slid
columnar phase are those involving displacements of D
strands within the layers. We will thus begin by consideri
the effective Hamiltonian foruz

n obtained by integrating ou
uy

n from H SC @Eq. ~2.19!#. From this we will calculate all
correlation functions ofuz

n . We will then consider membran
height correlations described by an effective Hamiltonian
hn in which uy

n anduz
n have been integrated out ofH tot @Eq.

~2.17!#. In the long-wavelength limit fluctuations inuy
n are

the same as those inhn. Finally, we will discuss the rel-
evancy of the shear couplingVu @Eq. ~2.16!#. This involves a
consideration of bothuz

n and]zuy
n .

A. Correlations in uz
n

1. Effective Hamiltonian for uz
n

Sinceuy
n and uz

n are harmonically coupled inHDNA
tot , we

can integrate overuy
n exactly to obtain an effective Hamil

tonian for uz
n fluctuations alone. This calculation is carrie

out in Appendix A. In the long-wavelength limit, the resu
ing Hamiltonian is

H z
SC5 1

2 (
n

aE d2r @B~uzz
n !21K~]x

2uz
n!2 ~3.1a!

1
Ky

a2 @]x~uz
n2uz

n11!#2] ~3.1b!

whereK5K2d and

B5B2d2~Buh
2 /B3d!. ~3.2!
h-

y

-

f

g
A

r

Note that there is no term proportional to (uzz
n112uzz

n )2 in
HamiltonianH z

SC, even though there is one inH SC. This is
a result of the special relation@Eq. ~2.20!# among energy
coefficients inH SC.

The Hamiltonian of Eq.~3.1! is the sum of two parts: a
sum of elastic energies for independent 2D smectics@Eq.
~3.1a!# and a term coupling angles in neighboring layers@Eq.
~3.1b!#. The 2D smectic energy is a function of the full no
linear strainuzz

n . WhenKy50 and there is no coupling be
tween layers, nonlinearities inuzz

n lead to important renor-
malizations of the long-wavelength elastic constant of a
smectic@10#. When the interlayer coupling term is presen
nonlinearities inuzz

n also lead to long wavelength renorma
ization of elastic constants in the SC phase@17#. These renor-
malizations are only logarithmic, however, and we will i
nore them in this paper.

We, therefore, consider the harmonic limit ofH z
SC, which

is conveniently expressed in Fourier space. Introducing

E d3q

~2p!3 5E
2p/a

p/a dqy

2p E
2Lx

Lx dqx

2p E
2Lz

Lz dqz

2p
, ~3.3!

whereLx andLz;2p/d are wave number cutoffs, and

uz
n~r !5E d3q

~2p!3 ei (qyna1q'•r )uz~q!, ~3.4!

whereq'5(qx ,0,qz), we obtain

H z
SC5

1

2E d3q

~2p!3 @Bqz
21Kqx

41Ky~qy!qx
2qy

2#uuz~q!u2.

~3.5!

Here

Ky~qy!5Kyp~qya!, ~3.6!

with

p~qya!52
~12cosqya!

~qya!2 , ~3.7!

which tends to unity asqya→0 so thatK(qy50)5Ky .
Two important length scales can be obtained from E

~3.1! by comparing the orientational interaction energy w
the 2D smectic compression and bending energies.
length scales

x* 5
a

my
and z* 5

a2

my
2l

, ~3.8!

with my5AKy /K and l5AK/B, separate two-dimensiona
from three-dimensional behavior. At length scales within
gallery less thanx* andz* , the 2D compression and bendin
energies are large compared to the orientational interact
and the DNA lattices behave like independent 2D smect
On the other hand, at length scales greater thanx* andz* ,
the orientational interaction is significant, and 3D sliding b
havior occurs.
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Before proceeding to discuss the sliding phase corr
tions, we note that the sliding phase elastic free energy in
~3.1! exhibits a strikinglocal ~gauge! translational invariance
of the form

uz~x,z,na!→uz~x,z,na!1 f ~n!; ~3.9!

here the displacementf (n) is anarbitrary function of n as-
suming a different value in each gallery. In other words,
DNA lattices in different galleries can continuously slid
relative to each other by arbitrary distances with no ela
energy costs. In a standard columnar phase, this contin
symmetry is spontaneously broken down by the shear c
pling in Eq. ~2.16!. On the other hand, in the sliding phas
this shear coupling is irrelevant at long scales, and ela
properties reflect the gauge symmetry in Eq.~3.9!. This sym-
metry is entirely responsible for the unconventional fluctu
tion behavior of the sliding phase we discuss in the follo
ing. In particular, we find that in the sliding phase, t
fluctuations of relative displacementsuz

n11(r )2uz
n(r ) of

DNA lattices in neighboring galleries diverge in the therm
dynamic limit. As a reflection of the gauge symmetry E
~3.9!, a DNA lattice in a gallery is essentially free to flo
relative to DNA lattices in neighboring galleries. The slidin
phase thus exhibits zero macroscopic shear modulus@6,7#.

2. Definitions of correlation functions

Correlations inuz
n follow directly from Eq.~3.5!,

Gzz~r ,na!5^uz
n~r !uz

0~0!&[^~uz
n~r !!2&2g~r ,na!

5E d3q

~2p!3 Gzz~q!ei (q'•r1qyna), ~3.10!

where

Gzz~q!5
T

Bqz
21Kqx

41Kyqx
2qy

2p~qya!
, ~3.11!

^~uz
n!2&5E d3q

~2p!3 Gzz~q!, ~3.12!

and

g~r ,na!5 1
2 ^@uz

n~r !2uz
0~0…#2&

5E d3q

~2p!3 Gzz~q!@12ei (q'•r1qyna)#. ~3.13!

It is useful to decomposeg(r ,na) into three parts,

g~r ,na!5g(1)~na!1g(2)~r !2g(3)~r ,na!, ~3.14!

where

g(1)~na!5 1
2 ^@uz

n~0!2uz
0~0!#2&

5E d3q

~2p!3 Gzz~q!~12cosqyna!, ~3.15!
a-
q.

e

ic
us
u-
,
ic

-
-

-
.

g(2)~r !5 1
2 ^@uz

0~r !2uz
0~0!#2&5E d3q

~2p!3 Gzz~q!~12eiq'•r !,

~3.16!

g(3)~r ,na!52^@uz
n~0!2uz

0~0!#@uz
n~r !2uz

n~0!#&

5E d3q

~2p!3 Gzz~q!3~12cosqyna!~12eiq'•r !.

~3.17!

It is clear thatg(1)(na)5g(0,na) andg(2)(r )5g(r ,0). Each
of these functions has a characteristic singular behavior
function of system size and separation, which we will su
marize below. Finally, the function

g(2)~r ,na!5g(2)~r !2g(3)~r ,na! ~3.18!

will appear in our derivation in Appendix F of interplan
density correlations discussed in Sec. III D.

3. Asymptotic forms for KyÅ0

The local fluctuation̂ (uz
n)2& in the SC phase diverges a

the squareof the log of the system size with a function
form that depends on the order in which the sample dim
sions Lx , Ly , and Lz along thex, y, and z directions ap-
proach infinity:

^~uz
n!2&5 l u

2H ln2@8Lx /x* #, Lz@Ly;Lx

1

2
ln2@azLz /z* #, Lx@Ly;Lz ,

~3.19!

where the lengthl u is defined via

l u
25

T

4p2ABKy

. ~3.20!

az is a number,Lz@z* , Lx@x* , and terms that do not di
verge with system size have been dropped. The calcula
of the displacement fluctuations in the limitLz→` and Lx
;Ly is detailed in Appendix B. Thus SC ‘‘in-plane’’ fluc
tuations are less divergent than 2D smectic fluctuations
scale as a power law with system size, but more diverg
than 3D Landau-Peierls smectic lamellar fluctuations t
grow logarithmically with system size@9,10#. The mean-
square angular fluctuation̂(un)2&5^(]xuz

n)2& is finite, im-
plying that the SC phase has three-dimensional long-ra
orientational order.

The ln2Lx,z divergence of̂ (uz
n)2& is converted to a ln2r

divergence in the functiong(2)(r ) @Eq. ~3.16!#. In Appendix
D, we outline the calculation ofg(2)(r ) for large r. The re-
sults @6,7# are

g(2)~r !5 l u
2H ln2@8egx/x* #1Cx if z50

1

2
ln2@32egz/z* #1Cz if x50,

~3.21!

whereg'0.577 is Euler’s constant andCx andCz are con-
stants that depend onLx and Lz but have well-defined
Lx,z→` limits. Note that the onlyLx,z dependence of the
correlation function in these two large distance limits
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found in the constantsCx andCz . Cx andCz are evaluated
in Appendix D in the continuum limit (Lx,z→`), in which
we find Cx50 andCz5p2/8.

The functiong(1)(na) @Eq. ~3.15!# is by definition zero
when n50. For all nÞ0, it diverges logarithmically with
system size:

g(1)~na!52l u
2Sn~0!lnFAn~Lx ,Lz!

Lx

x* G , ~3.22!

where

Sn~ t !5E
0

p

du
12cos~nu!

At21u2p~u!
, ~3.23!

Sn~0!5 (
k51

n
2

2k21
, ~3.24!

and An(Lx ,Lz) calculated in Appendix C depends on th
layer separationn and the ultraviolet cutoffs but has a wel
definedLx,z→` limit that is calculated in Appendix C.

The function g(3)(r ,na) @Eq. ~3.17!# is also zero atn
50. It has the same divergences as a function of separa
r that g(1)(na) has with system size

g(3)~r ,n!52l u
2Sn~0!H ln~Dnx/x* ! if z50

ln~Enz/z* ! if x50, ~3.25!

where Dn and En are numerical constants that have we
defined values in the continuum limit,Lx ,Lz→`, as dis-
cussed in Appendix E.

It is useful to summarize the results of the calculatio
just presented. Whenn50, i.e., for points in the same laye
g(r ,0)5g(2)(r ) grows with r as ln2r. When nÞ0, i.e., for
sites in different layers,g(r ,na) diverges logarithmically
with system size for allr becauseg(1)(na) diverges in this
way. If g(1)(na) is subtracted fromg(r ,n), then the remain-
ing function g(2)(r ,na) grows with r as ln2(r/rn), with r n
depending on the coefficient of lnr in g(3)(r ,na) when n
Þ0.

4. Limit KyÄ0: 2D smectic correlations

When Ky50, there are no interactions between plan
~whenVu50), and the system reduces to a stack of indep
dent 2D smectic planes. Since experiments@3# are consistent
with nearly independent 2D smectic layers, here we will
view well established results@10# for such systems.

Decoupled smectics are described by the Hamiltonian
Eq. ~3.1a! obtained by settingKy50 in H SC. This Hamil-
tonian is a function of the full nonlinear 2D strainuzz

n . Non-
linearities lead to important deviations from harmonic beh
ior. Since there is no coupling between layers,Gzz(q) is
independent ofqy , and we can define a 2D correlation fun
tion G2(q')5Gzz(q)/a.

At length scales less than the nonlinear lengths

l x5
8pK2

3/2

TAB2

and l z5
l x
2

l
, ~3.26!
on

s

s
n-

-

f

-

whereK25Ka and B25Ba are 2D bend and compressio
moduli, l5AK2 /B2, nonlinearities are unimportant, and 2
smectic fluctuations are described by the linearized ela
HamiltonianH z

SC of Eq. ~3.5! with Ky50 @10#. At length
scales longer thanl x and l z , the nonlinear terms in the rota
tionally invariant strain in Eq.~2.11! lead to renormalized
bending and compression moduliK2(q') and B2(q') that
diverge and vanish, respectively, at small wave numberq'

@10#. Note that the nonlinear lengthsl x and l z decrease with
increasing temperature, and thus nonlinearities become
portant at high temperatures. In both the harmonic and n
linear regimes, the Fourier transformed displacement co
lation function^uuz

n(q)u2& in each gallery were expressed a

G2~q'!5
T

B2~q'!qz
21K2~q'!qx

4
5

T

B2
l z
2q̃x

2gQ~ q̃z /q̃x
n!,

~3.27!

whereq̃x,z5qx,zl x,z and

q̃x
2gQ~ q̃z /q̃x

n!;H q̃x
2g , q̃z50

q̃z
2g/n q̃x50. ~3.28!

The scaling form of the correlation function implies th
K2(qx ,qz50);qx

241g and B2(qx50,qz);qz
221g/n . In the

harmonic regime whereqx,zl x,z.1, K2(q')5K2 and
B2(q')5B2 are constants, and the scaling exponents arg
54 and n52. In the anharmonic regimeqx,zl x,z,1, the
scaling exponentsg andn were calculated exactly by map
ping the 2D smectic model with thermal fluctuations onto t
Kardar-Parisi-Zhang~KPZ! model in 111 dimensions@10#.
The exponents in the anharmonic regime areg57/2 andn
53/2.

The mean-square displacement fluctuations diverge
both regimes with lengthsLx andLz of the sample in thexz
plane:

^uz
2~r !&5E d2q'

~2p!2
G2~q'!5l2L̃x

2a f u
(1)~ L̃z /L̃x

n!,

~3.29!

where uz(r )[uz
n(r ), 2a5g212n51 in both regimes,

L̃x,z5Lx,z / l x,z , f u
(1)(0)5const, and f u

(1)(w);w2a/n as w
→`. This implies that the Debye-Waller facto
^exp@iq0uz#&

25exp@2q0
2^uz

2&#50 in the limit of infinite system
size, and there is no long-range positional order at any fi
temperature in a 2D smectic, even when there are no di
cations.

Since the mean-square displacement fluctuations dive
as a power law with system size, the displacement corr
tion function

g2D~r !5
1

2
^@uz

n~r !2uz
n~0!#2&5l2ux̃u2a f u

(2)~ uz̃u/ux̃un!,

~3.30!

diverges algebraically with in-plane separationr. In Eq.
~3.30!, x̃5x/ l x , z̃5z/ l z , and the scaling behavior off u

(2)(w)
is similar to that off u

(1)(w). In the harmonic limit,
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q0
2g2D~r !5H ~z/jz!

1/2 if x50

~x/jx! is z50 , ~3.31!

where

jz5
lB2

2d4

4p3T2 ~3.32!

is a correlation length alongz and jx5l(d/p)2(B2 /T)
52Aljz /p is a correlation length alongx. These correlation
lengths are measured in x-ray scattering experiments at
ficiently short length scales when layers are decoupled.

Fluctuations in the angleu5]xuz are nondivergent be
cause of an additional factor ofqx

2 in the numerator of Eq.
~3.29!. Finite angular fluctuations imply that̂cosu&5exp
@2^u2&/2# is nonzero, and thus there is long-range orien
tional order in 2D smectics when there are no dislocati
@9#.

B. Correlations in hn
„r … and uy

n
„r …

In the absence of order in the DNA strands, lamellar DN
lipid complexes are simply multicomponent isotropic lam
lar systems with height fluctuations identical to those of a
isotropic lamellar smectic. The presence of orientational
der in the DNA lattices introduces anisotropy into the effe
tive bending moduli of the lipid membranes. By integrati
out uy

n(r ) anduz
n(r ) from the complete HamiltonianH tot of

Eq. ~2.17!, we obtain in Appendix A an effective Hamil
tonian for height fluctuations. In the long-wavelength lim
this effective Hamiltonian is

H h
SC5 1

2 (
n

aE d2r @~Blam/a2!~hn112hn!2

1Kab~]a]bhn!2#, ~3.33!

where

Blam5B3d2~Buh
2 /B2d!, ~3.34!

andKab is the bending-rigidity tensor defined in Eq.~2.21!.
The model in Eq.~3.33! is an anisotropic version of th
discrete smectic Hamiltonian often used to describe lame
systems@18,19#. An effective Hamiltonian for DNA-lattice
height displacementsuy

n(r ) can be obtained by integratin
over hn(r ) and uz

n(r ) in H tot of Eq. ~2.17!. The resulting
Hamiltonian is identical in the long-wavelength limit toHh
in Eq. ~3.33!. Thus correlations inuy(r ) are identical in this
model in the long-wavelength limit to those inhn(r ).

Fluctuations inhn are determined by the correlation fun
tion

Ghh~q!5
T

Blamqy
2p~qya!1Kabqa

2qb
2

, ~3.35!

whereKabqa
2qb

25K3d(qx
21qz

2)21K2dqx
4 . This equation im-

plies that ^@hn(r )#2& diverges logarithmically with system
size as it does in ordinary isotropic lamellar systems. T
coefficient of the system-size logarithm depends on the
isotropy inKab. Similarly, correlations inhn(r ), defined via
uf-

-
s

-
y
r-
-

ar

e
n-

gh~r ,na!5 1
2 ^@hn~r !2h0~0!#2&5 1

2 ^@uy
n~r !2uy

0~0!#2&

5E d3q

~2p!3 Ghh~q!@12ei (q'•r1qyna)#, ~3.36!

diverge logarithmically withna and r ,

k0
2gh~r ,na!5H hhln~nalxL

2! if r50

2hhln~L̃~u!r ! if n50 , ~3.37!

wherelx5AB/Kxx, k052p/a, and

hh5
k0

2T

8p2ABlamKxx
I ~Kxz/Kxx,Kzz/Kxx!, ~3.38!

where

I ~m,n!5
1

2pE2p

p du

Acos4u12m sin2u cos2u1n sin4u
.

~3.39!

In Eq. ~3.37!, L andL̃(u) are cutoffs that depend onLx and
Lz and ratios of bending moduli. In addition,L̃(u) depends
on the angleu that r makes with thex axis.

C. Density correlations

The DNA density correlation function arising from dis
placements parallel to lipid membranes is

S~r ,na!5^exp$ iq0@uz
n~r !2uz

0~0!#%&. ~3.40!

This function is easily evaluated in the SC phase whenVu

50:

S~r ,na!5e2q0
2g(r ,na), ~3.41!

whereg(r ,na) is the displacement correlation function d
fined in Eq.~3.13!. Sinceg(r ,na) diverges with the system
size for all nÞ0, S(r ,na) vanishes in the thermodynami
limit for all nÞ0. Thus DNA densities in different layers ar
completely uncorrelated in the SC phase when the coup
Vu in Eq. ~2.16! is set to zero.

1. In-plane correlations

When n50, g(r ,na) does not diverge in the thermody
namic limit, and we have

S2~r ![S~r ,0!5^eiq0[uz
n(r )2uz

n(0)]&5e2q0
2g(2)(r ),

~3.42!

with g(2)(r ) given by Eq.~3.16!. Thus, from Eqs.~3.21! and
~3.30!,

S2~x,0!5H Sxe
2q0

2l u
2ln2[8egx/x* ] , x@x* ;

e2q0
2g2D(x,0), x!x* , ~3.43!

whereSx5e2q0
2l u

2Cx is a constant, andg2D(r ) is the displace-
ment correlation function of a 2D smectic. In the other d
rection,
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S2~0,z!5H Sze
2(q0

2l u
2/2)ln2[32egz/z* ] , z@z*

e2q0
2g2D(0,z), z!z* ,

~3.44!

whereSz5e2q0
2l u

2Cz is a constant.

2. Interplane correlations

As we have just seen,S(r ,na) is zero whennÞ0 if Vu

50. WhenVu is not zero,S(r ,na) is not zero, and it can be
calculated perturbatively in a expansion inVu/T. Using the
decomposition of Eq.~2.18! of HDNA

tot in to H SC andH u, we
can expressS(r ,na) as

S~r ,na!5
^e2H u/Teiq0[uz

n(r )2uz
0(0)]&

^e2H u/T&
, ~3.45!

where ^•& signifies an average with respect toH SC. This
expression is easily expanded in a power series inVu/T. The
evaluation of even the lowest order term in this expans
cannot be carried out analytically. In Appendix F, we eva
ate the lowest order term in an approximation in whichKy

50, Buh50, and correlations in]zuy
n(r ) in different layers

are ignored. The result for the Fourier transform ofS(r ,na)
is

S~q' ,na!5S Ṽu

2T
D n

@S2~q'!#n11, ~3.46!

whereṼu5Vue2Wy, with

Wy5q0
2a2^~]zuy

n!2&/2, ~3.47!

and

S2~q'!5E d2q'

~2p!2
e2 iq'•rS2~r ! ~3.48!

is the Fourier transform of the two-dimensional intrapla
density correlations function of Eq.~3.42!. Since expression
~3.46! for S(q' ,na) was derived under the assumption th
Ky50, S2(r ) is, strictly speaking, the density correlation
an isolated 2D smectic. However, a more sophisticated va
tional approximation, to be presented in a separate pub
tion @14#, yields a result very similar to Eq.~3.46! for
S(q' ,na) with S2(q') replaced by the true intraplane co
relation function withKyÞ0 obtained by Fourier transform
ing S(r ,0) of Eq. ~3.41!.

TransformingS(q' ,na) back to real space, we obtain

S~r ,na!5S Ṽu

2T
D nE d2q'

~2p!2
eiq'•re(n11)ln S2(q').

~3.49!

The largen limit of this expression can be calculated usi
steepest descents. For fixedr andn→`, the result is

S~r ,na!5
2pT

Ṽunjxjz

e2unua/jye2[(x2/jx
2)1(z2/jz

2)] , ~3.50!
n
-

t

a-
a-

where

ja
25

1

S2~r50!
E d2rr a

2S2~r ! ~3.51!

for a5x,z and r a5x,z and where

jy5a lnS 2T

ṼuS2~q'50!
D 21

. ~3.52!

Since S2(r ) dies off at least as fast ase2r when Ky50
@9,10# and as exp(2const3 ln2r) when KyÞ0, the integrals
in Eq. ~3.51! converge, andjx andjz are well defined.

D. X-ray scattering

X-ray scattering experiments probeI (q)5^r(q)r
(2q)&/V, whereV is the volume of the system, andr(q) is
the weighted sum of the DNA and membrane densit
rDNA(x) andrmem(x). The total scattering intensity can thu
be broken up into a DNA contributionI DNA(q), a membrane
contribution I mem(q), and a DNA-membrane cross term
Scattering from the ordinary columnar phase will exhibit tr
Bragg peaks atGlm5(0,(l 1 1

2 sm)k0 ,mq0). Heres50 for a
simple rectangular columnar lattice, ands51 for a centered
rectangular columnar lattice. Since there is no long-ran
positional order in the SC phase, there will be no Bra
peaks in its x-ray scattering profile. Rather there will
membrane-dominated lamellar peaks atGl05(0,lk0 ,0), and
DNA-dominated sub-power-law peaks atGlm for mÞ0.

The contribution of lipid membranes to the x-ray scatt
ing intensity is

I mem~q!5
1

a
u f mem~qy!u2(

n
e2 iqyna

3E d2re2 iq'•rSh~r ,na,qy!, ~3.53!

where

Sh~r ,na,qy!5^e2 iqy[hn(r )2h0(0)]&5e2qy
2gh(r ,na).

~3.54!

andgh(r ,na) is evaluated in Eq.~3.36!. Thus, for example,

Sh~0,na,k0!;~na!2hh. ~3.55!

Except for some anisotropies, this yields power-law Bra
peaks that are essentially identical to those of a nor
lamellar smectic.

The contribution of the DNA lattices to the x-ray scatte
ing intensity is

I DNA~q!5^rDNA~q!rDNA~2q!&

5
1

a (
nk

u f y
k~qy!u2urnku2e2 iqynae2 ikq0zn

3E d2re2 iDq'
k
•rSyz~r ,na,qy ,k!, ~3.56!

whereDq'
k 5q'2kq0ez and
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Syz~r ,na,qy ,k!5^e2 iqy[uy
n(r )2uy

n(0)]e2 iq0k[uz
n(r )2uz

0(0)]&.
~3.57!

This correlation function is even more complicated to cal
late thanS(r ,na) @Eq. ~3.45!#. When Buh50, uy

n and uz
n

decouple, and whenk561, we have

Syz~r ,na,qy ,k561!5Sh~r ,na,qy!S~r ,na!, ~3.58!

where we used the fact that correlations inuy
n are the same a

those in hn. Thus, at r50, this function dies off as
n2hh21e2na/jy whenqy5k0.

If we ignore theSh(r ,na,qy) contribution ofSyz ~which
would be justified forBlam→`) and we use the approxima
tion of Eq. ~3.49! for S(r ,na), then the sum overn in Eq.
~3.56! can be carried out exactly. The result for the domin
contribution withk561 is

I DNA~q!5
1

a
S2~Dq'

1 !u f DNA
1 ~qy!u2F~q!, ~3.59!

where

F~q!5

12S VuS2~Dq'
1 !

2T D 2

122
VuS2~Dq'

1 !

T
cos~qya2sp!1S VuS2~Dq'

1 !

2T D 2 .

~3.60!

The structure functionF(q) reaches a maximum atqy
5mk0 if a rectangular lattice (s50) is preferred and atqy
5(m1 1

2 )k0 when a centered rectangular lattice (s51) is
preferred. At these peaks,F(q) does not exhibit singula
behavior: the functionS2(Dq') @Eq. ~3.48!# entering Eq.
~3.60! can be expanded in powers ofDq' to all orders.

Out-of-plane lamellar fluctuations, ignored in Eqs.~3.59!
and~3.60! ~by assumingBlam→`), become significant when
the interlayer positional couplingVu is weak. For example
for Vu50 and finiteBlam, we find, using Eqs.~3.56!–~3.58!,

I DNA5
1

a
u f DNA

1 ~qy!u2E d2re2Dq'
1
•rSh~r ,na50,qy!S2~r !.

~3.61!

Using Eq.~3.54!, it is easy to see thatI DNA(q) has amaxi-
mumat qy50,Dq'

1 50 @even for infinitely thin DNA, with
f DNA

1 (qy)51#. This peak remains atqy50 for sufficiently
weak nonzeroVu @14#. Thus, for sufficiently weak interlaye
coupling, the scattering structure factor has a form res
bling that of a simple rectangular lattice, with a (0,1)-lik
peak atqy50 even though the system has short-range c
tered rectangular orderin real space, With increasing
strength of interlayer positional coupling, this peak will b
furcate, at a critical value ofVu, into two (61,1) peaks at
nonzeroqy ~as in Fig. 2!. Such a change of the form factor
not accompanied by a thermodynamic phase transition.
similar in character to the transition across so-called dis
dering line in random microemulsions@20,21#, at which the
wave-vector maximizingS(q) vanishes.
-

t

-

n-

is
r-

IV. STABILITY OF THE SLIDING COLUMNAR PHASE

Until now, we have treated the sliding columnar phase
though it were thermodynamically stable. We will now e
amine conditions for this stability. In order for the SC pha
to exist, it must be stable against forces that bring ab
registry between neighboring DNA lattices to produce t
columnar phase; and it must be stable with respect to
disordering effect of dislocations that leads to a nema
lamellar phase. In this section, we will investigate these t
effects. We find that the SC phase orders into the colum
phase via a rougheninglike transition at a decoupling te
peratureTd and that it melts to the nematic phase via a d
location unbinding transition at a temperatureTKT . Thus the
SC phase can only exist in a temperature rangeTd,T
,TKT , and it cannot exist at all ifTKT,Td . We calculate
Td andTKT for our nearest-neighbor model, and we find th

b5
TKT

Td
5

1

p2,1 ~4.1!

for systems with temperature independent coupling c
stants. ThusTKT,Td , and, for our model, the SC phase
never thermodynamically stable. The introduction of co
peting nearest-neighbor and next-nearest-neighbor s
couplings can, however, reverse the inequality onTKT and
Td and stabilize the SC phase@13#. Even when the SC phas
is not thermodynamically stable, there is a range of len
scales in the lamellar nematic phase in which correlat
functions will exhibit SC behavior.

A. Relevance of translational coupling

In the sliding columnar phase, fluctuations of relative d
placementsuz

n11(r )2uz
n(r ) of DNA lattices in neighboring

galleries grow with increasing systems size. We found
Sec. III A 2 that^@uz

n11(r )2uz
n(r )#2&; ln L @see Eqs.~3.15!

and ~3.22!#. Due to this divergence, the translational co
pling @Eq. ~2.16!# may become irrelevant above a critic
decoupling temperature. This result is obtained by calcu
ing the expectation value of the translational coupling

^H n
u&52VuE d2r ^cos@q0~uz

n112uz
n1a]zuy

n!#&

~4.2!

with respect to the sliding columnar Hamiltonian in E
~3.1!. Because the cross correlation^]zuy

n(uz
n112uz

n)& is
zero, we can evaluate this quantity exactly:

^H n
u&52Vue2WyE d2rexp@2q0

2g(1)~a!#, ~4.3!

whereWy5q0
2a2^(]zuy

n)2&/2 , Using the fact thatg(1)(na)
diverges logarithmically with system size@Eq. ~3.22!#, we
find that the translational coupling scales as

^H n
u&;2Vue2WyL22hd, ~4.4!

where
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1080 PRE 62L. GOLUBOVIĆ, T. C. LUBENSKY, AND C. S. O’HERN
hd52~q0l u!2S1~0!5
4T

d2ABKy

. ~4.5!

The condition 22hd50 defines the critical decoupling tem
perature

Td5
d2ABKy

2
. ~4.6!

WhenT,Td , the translational coupling scales as the syst
size to a positive power, andVu is relevant. In this case, th
system becomes a columnar phase at the longest le
scales with a nonzero shear modulus for shifting neighbo
lattices relative to each other and long-range positional o
in the yz plane. WhenT.Td , the translational coupling
scales as the system size to a negative power, andVu is
irrelevant. The system flows to the sliding columnar phas
the longest length scales whenT.Td . Thus Td marks the
transition from the columnar phase to the SC phase as
perature is increased. This transition is of the roughen
type. There is no energy cost for shifting neighboring lattic
relative to each other, and thus the sliding columnar phas
positionally disordered in theyz plane. These conclusion
are supported by a renormalization group analysis to be
sented in Ref.@14#.

B. Dislocation unbinding

We have just seen how thermal fluctuations weaken in
layer couplings to produce the SC phase from the colum
phase. We will now consider the disordering effects of d
locations. An individual edge dislocation in a 2D smectic h
a finite rather than a logarithmically divergent energy. As
result, there are thermally excited unbound vortex pairs a
temperatures that convert the 2D smectic into a 2D nem
at the longest length scales@9#. In a sliding columnar phase
each DNA smectic layer experiences an orientational ord
ing field from its neighbors. As a result, the energy of
individual edge dislocation in a given layer diverges log
rithmically with system size, and there can be a Kosterl
Thouless dislocation unbinding transition. The low
temperature phase with bound dislocations is the slid
columnar phase, and the high-temperature phase with
bound dislocations is the lamellar nematic phase.

1. Dislocation energy

The DNA smectic lattice in each layer can have ed
dislocation defects in which the displacement fielduz

n under-
goes a change ofkd, wherek is an integer, in one circui
around the defect core. If there are dislocations with inte
strengthskn,l at positionsrn,l in layer n, then

“'3vn~r !5bn~r !ŷ, ~4.7!

wherevn(r )5“'uz
n(r ), and

bn~r !5d(
l

kn,ld
2~r2rn,l ! ~4.8!

is the dislocation density in layern.
th
g
er

at
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We can now calculate the energy cost of an arbitrary
sembly of edge dislocations in the sliding columnar pha
using the SC Hamiltonian

H sc5
1

2 (
n

aE d2r FB~vz
n!21K~]xvx

n!21
Ky

a2 ~vx
n2vx

n11!2G ,
~4.9!

written in terms ofvn(r )5(vx
n ,vz

n). Our strategy is to mini-
mize this Hamiltonian subject to a nonzero dislocation d
sity bn(r ). As usual, the calculation is simpler in Fourie
space. To transform from real space to Fourier space, we

v~q!5(
n

aE d2re2 i (q'•r1qyna)vn~r !, ~4.10!

b~q!5(
n

aE d2re2 i (q'•r1qyna)bn~r !

5ad(
n,l

kn,le
2 i (q'•rn,l1qyna). ~4.11!

We minimize Eq.~4.9! using the Euler-Lagrange equation
and find

vx~q!52
qz

qx

B

K~q!q2
vz~q!, ~4.12!

where

K~q!q25Kqx
21Kyqy

2p~qya!. ~4.13!

We then employ constraint~4.7! to relatevz(q) to the speci-
fied dislocation densityb(q). In the final step, we insert the
expressions forv(q) into the Fourier transformed version o
Eq. ~4.9!, and find

ED5
B

2E2p/a

p/a dqy

2p E d2q'

~2p!2

K~q!q2ub~q!u2

Bqz
21K~q!q2qx

2
~4.14!

for the energy of edge dislocations in the sliding column
phase. Also note that if we setKy50, Eq. ~4.14! reduces to
the expression for the energy cost for edge dislocations
2D smectic@9#.

We now decompose the dislocation energy into a part
diverges with system size and a part that diverges only w
the separation between defects. After we insert Eq.~4.11!
into Eq. ~4.14!, we find

ED5
ABKyd

2

4p2 F (
n,n8

snsn8Jn2n8ln@Bn2n8~Lx!Lx /x* #

1 (
n,n8,l ,l 8

kn,lkn8,l 8En2n8~rn,l2rn8,l 8!G , ~4.15!

wheresn5( lkn,l is the total dislocation charge in thenth
layer,

Jn5E
0

p

duAu2p~u!cosnu5
4

124n2 , ~4.16!
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andBn(Lx) is given in Appendix G. The first term diverge
logarithmically with system size. The interaction ener
En(r ) @Eq. ~4.15!#, on the other hand, is written in terms o
an integral that vanishes whenr50, and thus it diverges
only with the separation between defects. In the limit of
finite system size,Jn2n8 is a positive definite matrix. The
dislocation energy diverges logarithmically with system s
unless the total dislocation charge in each layer is zero,
sn50 for everyn.

The dislocation interaction energy of Eq.~4.15!,

En~r !52E
0

p

duE
0

Lxx* dt

t
At21u2p~u!

3cosnuS 12cos@ tx/x* #expF2
z

z*
tAt21u2p~u!G D ,

~4.17!

is difficult to calculate for arbitrary separations (r ,na), how-
ever, it can be calculated in the limitsx@x* , z50 and z
@z* , x50. We find thatEn(r ) scales as

En~r !52JnH ln@Cn
x~Lx!uxu/x* # if x@x* and z50

ln@Cn
z~Lx!uzu/z* # if z@z* and x50,

whereCn
x,z(Lx) are numbers that depend on the layer ind

n and the cutoffLx and are given in Appendix G. Note tha
the Lx→` limit of En(r ) is not well defined. SinceEn(r )
; ln r/(4n221) for larger, En(r ) is positive for alln.0 and
negative forn50. As a result, like-signed dislocations
different layersattract each other, whereas like-signed disl
cations in the same layerrepel each other.

The attraction of like-sign dislocations in different galle
ies makes physical sense. The dislocation excitations of
SC phase can be viewed as closed loops carrying a si
value of charge, with portions of the loop passing norma
layers and portions passing parallel to layers. Those par
the loops passing through layers give rise to layer dislo
tions, and those parts aligned parallel to layers cost no
ergy because the shear modulus is zero@6,7#. A direction can
be assigned to a loop. A loop section penetrating a laye
the upward direction gives rise to a dislocation of one s
while one penetrating in the downward direction gives rise
a dislocation of the opposite sign. As is apparent from Fig
the expectation is that the lowest energy configuration o
continuous loop will penetrate nearby points in nearby lay
in the same direction, i.e., that nearby dislocations in nea
layers will have the same sign. This argument is, of cou
not rigorous because it is possible for dislocation lines r
ning parallel to layers to cross to produce nearby dislocati
in nearby layers of opposite sign as shown in Fig. 4~e!. In
fact, it is possible to construct interlayer interactions
which like-sign dislocations in neighboring layers rep
rather than attract.

2. Dislocation unbinding temperature

In Sec. III, we showed that the dislocation energy is log
rithmically divergent unless there is dislocation charge n
trality in each layer. Consider now a configuration in whi
-

e
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layer n has a single dislocation of chargesn ~which may be
zero!. The free energy of such a composite dislocation c
figuration is, by Eq.~4.15!,

FD5ED2TSD

5S ABKyd
2

4p2T
(
n,n8

Jn2n8snsn822TD ln L1const.

~4.18!

Clearly Eq.~4.18! indicates that composite dislocations pa
unbind for temperatures above the Kosterlitz-Thouless t
temperature:

TKT@sn#5
ABKyd

2

8p2 (
n,n8

Jn2n8snsn8 . ~4.19!

If sn is nonzero only in layerm (sn5dnm), the transition
corresponds to an unbinding of simple dislocations pa
within a single layer. Ifsn is nonzero in more than one laye
the transition corresponds to the unbinding of compos
multilayer dislocations pairs, as depicted in Fig. 4~b!.

We see that each configuration of dislocations$sn% will
have a different unbinding temperature. The naive expe
tion is thatTKT is lowest when there is a single dislocation
a single layer. It is, however, possible that composite dis
cations might melt at a lower temperature. Hence we de
TKT5minsn

TKT@sn#. Above this temperature, one of the di
location configurations~either composite or individual! un-
binds, renormalizes the compression modulusB to zero, and
destroys the in-plane 2D smectic order of the sliding colu
nar phase. The lowest unbinding temperature correspond
the configuration with the lowest lnLx divergent energy@see
Eqs.~4.19! and~4.15!#. SinceJn,0 for all n.0, uJnu decays
with increasing layer separation, and the dislocation ene
scales quadratically with the dislocation charge; the low
energy configuration withN defects is a string ofN defects

FIG. 4. ~a! A sequence of closely bound dislocations in neig
boring layers interpreted as a dislocation loop.~b! An unbound
version of the dislocation configuration of~a!, also interpreted as a
dislocation loop.~c! A complex composite-dislocation pair.~d!
Melted composite pair of~c!. ~e! Opposite-sign dislocations a
nearby points in neighboring layers interpreted as a crossed d
cation loop.
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of strength11 with one in each layer, i.e.,sn5(p51
N dn,p . It

is then straightforward to show that the lowest of these c
figurations is an individual defect withN51. Therefore, the
dislocation unbinding temperature for the sliding column
phase is

TKT5
d2ABKy

2p2
. ~4.20!

The ratio of this temperature to the unbinding temperatureTd
@Eq. ~4.6!# yields Eq.~4.1! for b5TKT /Td51/p2.

C. Comments on lyotropic systems

An interesting aspect of the present study is the transiti
from the sliding to the columnar and the nematic phase
discussed above in terms of the corresponding critical t
peratures: the decoupling temperatureTd @Eq. ~4.6!#, for the
columnar to sliding phase transition, andTKT @Eq. ~4.20!# for
the sliding to nematic phase transition. In lyotropic syste
of interest here~Refs. @2–5#!, temperature changes ca
hardly produce significant effects. Nonetheless, the ab
transitions can still be triggered by varying the period
DNA lattices ~as lattices described in Refs.@2–5#!. Indeed,
from previous discussions, the decoupling conditionT
.Td , is equivalent tohd.2, with hd54T/d2(BKy)

1/2.
Thus the decoupling transition from the columnar to slidi
phase may be triggered by changing the strength of the
terlayer orientational coupling constantKy . As evidenced
clearly in experiments@4,3#, the strength of interlayer cou
plings significantly increases by increasing the period
DNA lattices. Thus, by swelling these lattices, one m
reach a transition in which the sliding phase changes in
columnar phase, as discussed in Sec. IV A, and, in m
detail, in Ref.@14#. Finally, we emphasize that, within th
simple model discussed here, there is no true sliding ph
as suggested by Eq.~4.1! that applies to systems with tem
perature independent coupling constants. It should
stressed, however, that the restriction of having temperat
independent constants is not essential for this important c
clusion about the sliding phase stability. Neither is it ess
tial whether the system is thermotropic or lyotropic
character. Indeed, as seen in Sec. IV A, the condition to h
dislocations bound~i.e., T,TKT) is equivalent tohKT.2,
with hKT5d2(BKy)

1/2/p2T, for the model discussed her
~Sec. II!. Note that

hd hKT54/p2,4. ~4.21!

This relation implies that the condition for dislocations co
finement (hKT.2) and the condition (hd.2) for sliding
phase decoupling cannot be simultaneously realized. Wh
ever the decoupling condition is realized,hd.2, hKT
54/p2hd,2, and dislocations will unbind. This featur
turns the sliding phase into a nematic phase at long len
scales. Still, at low dislocation densities~what may well be
the realistic case; see Sec. V!, in such a nematic phase, the
is a broad range of length scales exhibiting sliding-ph
correlations and other structural properties discussed in
work.
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V. CHARACTERISTIC LENGTH SCALES

Whether or not sliding columnar behavior is seen in
cent x-ray scattering experiments on CL-DNA complexes
still an open question@3,4#. Even though the sliding colum
nar phase is converted into a nematic lamellar phase at
longest length scales, the SC phase may exist at sho
length scales determined by the density of edge dislocati
Thus CL-DNA complexes studied in recent experiments w
domain sizesL'0.1 mm may exhibit a sliding columna
behavior. However, in the next round of experiments it w
be important to prepare aligned CL-DNA samples beca
powder averaging complicates the functional form of t
scattering intensity and makes it difficult to identify slidin
columnar behavior.

We showed in Sec. III that the density-density correlati
function S2(r ) @Eq. ~3.42!# displays different functional
forms depending on the magnitude of the in-plane separa
r . The crossover length scales for the correlation function
l x , l z , jd , x* , andz* . The harmonic 2D smectic regime i
defined byx,z, l x,z and the nonlinear 2D smectic regime
defined byx,z. l x,z , where the nonlinear lengthsl x,z are
given in Eq. ~3.26!. To estimate the nonlinear lengths, w
must determinel x and l z in terms the experimentally mea
sured quantitiesd and the harmonic correlation lengthjz of
Eq. ~3.32!. l x and l z can be written in terms ofd andjz by
solving Eq.~3.32! for B2 and using

K25Tjp/2d, ~5.1!

wherejp5500 Å is the persistence length of DNA. Table
evaluates the nonlinear lengths for two DNA spacings of
experiments of references@2,3#. It shows thatL, l x,z and
indicates that significant departure from harmonic 2D sm
tic behavior is not expected in agreement with these exp
ments.

The finite length of the DNA moleculesl DNA'16 mm
introduces another crossover length scale. The density
DNA molecules within a given layer isr51/dlDNA . If we
assume that each free end of a DNA strand corresponds
dislocation, then we can estimate the characteristic dista
between dislocations to be

jd5AdlDNA. ~5.2!

This length is clearly smaller than the actual distance
tween dislocations because not every end of a DNA str
has to produce a dislocation: a series of DNA strands
align in a row to produce a layer of a 2D smectic. At lengt
scales greater thanjd , the 2D smectic behaves like a nem
atic @9#. Using the estimate of Eq.~5.2!, we find jd
'0.21 mm and 0.30mm, whend528 and 55 Å , respec-

TABLE I. The nonlinear lengthsl x and l z calculated as a func-
tion of the DNA spacingd using the experimental values of th
in-plane correlation lengthjz .

Nonlinear length d528 Å d555 Å

l x 0.35 mm 0.24 mm
l z 9 mm 6 mm



al

rp
in

th
c

le

nt

th

m
m
in
b
2D
a

t-
in
he
es
al
te
uc
te

ys

i
id
s
rd
d
tic

os
t
e

l-

A
u

e

. The
s in
in
the
in

ter.
.
de-

y
r-

a
f
r
ve
at-
ular
o-
A
ith
he
de-
aps

ls,
the
7-
l-
n

-

in

PRE 62 1083STRUCTURAL PROPERTIES OF THE SLIDING . . .
tively. Note thatL,jd , and thus the subdomains are sm
enough to possess 2D smectic ordering.

We can also estimate the energy cost for creating hai
edge dislocations within the 2D smectic lattices. Hairp
cause the DNA director to change byp over a lattice spacing
d. The energy cost for a hairpin can be estimated from
2D bending energy. If we ignore relaxation of the 2D sme
tic layers, we estimate the bending energy to be

Ehp

2T
5

p

4

jp

d
, ~5.3!

which implies that hairpins are favored on length sca
greater than

jhp5d expS Ehp

2T D . ~5.4!

Since jhp@jd.L throughout the experimental range ind,
hairpins are not important for the current set of experime
We do not yet have accurate estimates ofx* andz* since the
value of the orientational rigidityKy is unknown. Scattering
experiments will see sliding columnar behavior on leng
scales less thanjd if x* ,z* ,jd .

VI. DISCUSSION AND CONCLUSION

In this paper, we have introduced the new sliding colu
nar ~SC! phase of matter which may exist in layered syste
composed of weakly coupled 2D smectic lattices. The slid
columnar phase is characterized by weak positional
strong orientational correlations between neighboring
smectic lattices. The SC harmonic free energy contains
orientational rigidity that aligns neighboring 2D smectic la
tices in addition to in-plane compression and bend
moduli. The SC phase is characterized by a vanishing s
modulus for relative displacements of 2D smectic lattic
The presence of the orientational rigidity fundamentally
ters the energy spectrum. In light of this, we have calcula
the structural properties of the sliding columnar phase s
as the SC displacement correlation function, scattering in
sity, and dislocation energy.

Experimental research on layered liquid crystalline s
tems studied in this work is in progress@2–5#. Correlation
peaks discussed here theoretically have been observed
number of scattering experiments on DNA-cationic lip
complexes. Reference@4# reported DNA scattering pattern
that clearly reflect the short-range centered-rectangular o
depicted in Fig. 2. Reference@3#, on the other hand, reporte
peaks in a different system at the simple rectangular lat
positions (0,0,6q0) @i.e., at ~0,1! peaks#. In spite of this
difference in scattering data, it is likely thatboth systems
have short-range centered rectangular order inreal space.
Indeed, in a strongly fluctuating disordered systems, p
tions of correlation peaks inq space may not always reflec
length scales and short-range order in real space. For
ample, the correlation peak inq space in random microemu
sions@20,21# may occur atq50 even in situations in which
real space data still show a finite structural length scale.
discussed at the end of Sec. III C, for sufficiently small co
pling interlayer positional couplingVu/T, the scattering form
l

in
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s
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-
s
g
ut
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g
ar
.
-
d
h

n-

-

n a

er

e
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factor I DNA(q) exhibits a maximum at the simpl
rectangular-lattice points (0,0,6q0), even though the system
has short-range centered rectangular order in real space
differences between the positions of the scattering peak
Refs. @3# and @4# may be explained by the differences
thermal disorder and/or interlayer couplings strengths of
two systems. The interlayer correlation length reported
Ref. @4# is several times longer than that reported in Ref.@3#.
The former system is stiffer and more ordered than the lat
Consequently the (1,1) and (21,1) correlation peaks in Ref
@4#reflect the centered-rectangular order in real space
picted in Fig. 1, whereas the (0,1) peak reported in Ref.@3#
reflects the merging of (61,1) peaks brought about b
strong thermal fluctuations and/or sufficiently weak inte
layer couplings.

After completing this work, we learned from Joachim R¨-
dler of experiments@22# showing a continuous variation o
the DNA form factor with changing strength of interlaye
coupling Vu consistent with the change we describe abo
and in Sec. III D~a crossover from centered rectangular sc
tering pattern to one resembling that of a simple rectang
lattice!. In these experiments, the variation of interlayer p
sitional coupling is produced by varying the period of DN
lattices in galleries. This coupling generally increases w
increasing period of DNA lattices, most likely because t
Coulomb interaction increases and the elastic membrane
formation increases, as suggested by electron density m
of the system@22#.
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APPENDIX A: DERIVATION OF EFFECTIVE
HAMILTONIANS

In this appendix, we will derive the effective Hamilto
niansH SC @Eq. ~2.19!#, andH z

SC @Eq. ~3.1!#, andHh @Eq.
~3.33!# obtained, respectively, by integrating outhn(r ),
hn(r ), and uy

n(r ) and uz
n(r ) and uy

n(r ) from H̃5H bend

1H com1H rot, which we can express in linearized form
Fourier space as

H̃5
1

2E d3q

~2p!3 H Ah~q!uh~q!u21(
s

As~q!uus~q!u2

2(
s

@ls~q!us~q!h~2q!1ls~2q!us~2q!h~q!#J ,

~A1!

wheres5y,z, and

Ah~q!5K3dq'
4 14~B3d /a2!,

Ay~q!54~B3d /a2!1K2dqx
4 ,
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Az~q!5B2dqz
21K2dqx

41Kyqx
2qy

2p~qya!,

ly~q!5~2B3d /a2!~11e2 iqya!,

lz~q!52~Buh /a!iqz~e2 iqya21!. ~A2!

Integration overh(q) yields

H̃SC5
1

2E d3q

~2p!3 @Ay8~q!uuy~q!u21Az8uuz~q!u2

2m~q!uy~q!uz~2q!2m~2q!uy~2q!uz~q!#,

~A3!

where

As8 ~q!5As~q!2
uls~q!u2

Ah~q!
~A4!

m~q!5
ly~q!lz~2q!

Ah~q!
. ~A5!

In the smallq' limit, these expressions reduce to

Ay8~q!5~B3d /a2!2~12cosqya!1Kabqa
2qb

2 , ~A6!

Az8~q!5B2dqz
22

Buh
2

4B3d
qz

22~12cosqya!1K2dqx
4

1Kyqx
2qy

2p~qya!, ~A7!

m~q!52~Buh /a!qzsinqya, ~A8!

whereKab is the bending rigidity tensor of Eq.~2.21!. Fou-
rier transformation of Eq.~A3! back to real space using th
low-q' form of Ay(q), Az(q) andm(q) produces the sliding
phase HamiltonianH SC of Eq. ~2.19!.

The effective Hamiltonian foruz is obtained by integrat-
ing H̃SC over uy . The result is

H̃z
SC5

1

2E d3q

~2p!3 Az9~q!uuz~q!u2, ~A9!

where

Az9~q!5Az8~q!2
um~q!u2

Ay8~q!
. ~A10!

In the q'→0 limit, Az9(q) becomes

Az9~q!→qz
2FB2d2

Buh
2

4B3d
2~12cosqya!

2
Buh

2

B3d

sin2qya

2~12cosqya!
G

~A11!1Kyqx
2qy

2p~qya!1K2dqx
4

5qz
2S B2d2

Buh
2

B3d
D 1K2dqx

4 ,

1Kyqx
2qy

2p~qya!, ~A12!
where we used the identity

12cosf1
sin2f

12cosf
52 ~A13!

to obtain Eq.~A12!. Transformation ofH̃z
SC to real space

using the lowq' form of Az9 producesH z
SC of Eq. ~3.1!. The

absence of anyqy dependence in the coefficient ofqz
2 in

Az9(q) can be traced the equalityBuh
2 /B3d54Bzz @Eq. ~2.20!#

that results from integrating outhn from the original model.
Effective Hamiltonians forhn(r ) anduy

n(r ) can be obtained
by integrating outuy

n and uz
n from H tot and uz

n from H SC,
respectively. The results are

H h
SC5

1

2E d3q

~2p!3 Ah9~q!uh~q!u2, ~A14!

H y
SC5

1

2E d3q

~2p!3 Ay9~q!uuy~q!u2, ~A15!

where

Ah9~q!5Ah~q!2
ulz~q!u2

Az~q!
2

uly~q!u2

Ay~q!
, ~A16!

Ay9~q!5Ay~q!2
uly~q!u2

Ah~q!2ulz~q!u2/Az~q!
. ~A17!

In the limit q'→0, with qx
2!(B2da2/Ky)qz

2 , both of these
Hamiltonian reduce toHh in Eq. ~3.33!.

APPENDIX B: CALCULATION OF Š„uz
n
…

2
‹

In this appendix, the expression for the sliding column
displacement fluctuations given in Eq.~3.19! is derived. To
do this, we evaluate the integral of the Fourier transform
SC correlatorGzz(q) over all q space,

^~uz
n!2&5E d3q

~2p!3

T

Bqz
21Kqx

41Kyqx
2qy

2p~qya!
, ~B1!

where p(u)52(12cosu)/u2. The fluctuations diverge a
small wave numbersq;1/L, whereL is the system size. To
calculate how the fluctuations scale withLx , we setLz→`
andLy;Lx . Note that the SC form forGzz(q) is valid only
when Lx@x* , wherex* 5a/my and my5AKy /K. The first
step in the calculation is to perform the integration overqz
with Lz→` and then use the fact thatGzz(q) is an even
function of q, so that the remaining integrals run over on
positive qx and qy . Note that taking theLz→` limit does
not alterqx,y→0 divergences. The resulting expression

^~uz
n!2&5

T

2p2ABK
E

Lx
21

Lx dqx

qx
E

Ly
21

Ly
dqy

1

Aqx
21my

2qy
2p~qya!

,

where Ly5p/a, is made dimensionless by changing va
ables tov5qxx* and w5qya. The ln2Lx divergence of the
displacement fluctuations can be seen immediately by lo
ing at theqx,y→0 limit of this expression.
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The SC displacement fluctuations can be written as
sum of a continuum termI c that does not depend onp(w)
and discrete termI d that does depend onp(w),

^~uz
n!2&[

T

2p2ABKy

@ I c1I d#, ~B2!

whereI c and I d are defined by

I c5E
x* Lx

21

Lxx* dv
v E

aLy
21

aLy dw

Av21w2

I d5E
x* Lx

21

Lxx* dv
v E

aLy
21

aLy
dwF 1

Av21w2p~w!
2

1

Av21w2G .

We first focus on the continuum contributionI c . The inte-
gral overw is straightforward:

I c5E
x* Lx

21

Lxx* dv
v

@ f ~Lya,v !2 f ~Ly
21a,v !#[I c

(1)2I c
(2) ,

~B3!

where

f ~x,v !5 ln@x1Ax21v2#. ~B4!

The integral overv in I c
(1) can be evaluated by separating t

function

f ~Lya,v !5 ln@2Lya#1 lnF1

2
1

1

2
A11~v/Lya!2G

into a constant term and a term that is well behaved at sm
v. We then insert this expression into Eq.~B3! and find that

I c
(1)5 ln@2Lya# ln@LxLx#1E

x* Lx
21

Lxx* dv
v

3 lnF1

2
1

1

2
A11~v/Lya!2G . ~B5!

The first term diverges with system sizeLx , and the second
term is nondivergent.f (aLy

21 ,v) can also be separated in
a constant term and a term that depends onv. We then inte-
grate f (aLy

21 ,v) over v to find

I c
(2)5 ln@2aLy

21# ln@LxLx#1E
x* Lx

21

Lxx* dv
v

3 lnF1

2
1

1

2
A11S Lyv

a D 2G . ~B6!

The Ly dependence in the integrand of the second term
be moved to limits of the integral by changing variables
s5Lyv/a. In contrast to the previous expression forI c

(1) in
Eq. ~B5!, the larges part of the integral in Eq.~B6! diverges
with system size. The divergence can be isolated by add
and subtracting ln@s/2#/s. The resulting expression,
e

ll

n

g

I c
(2)5 ln@2aLy

21# ln@LxLx#1
1

2
ln2FLxLy

2my
G2

1

2
ln2F Ly

2myLx
G

1E
Ly /Lxmy

LxLy /myds

s S lnF1

2
1

1

2
A11s2G2 ln@s/2# D ,

has two terms that diverge and two terms that do not dive
with system size. Note thatLy /Lxmy is O(1) since Lx

;Ly . We then subtractI c
(2) from I c

(1) , drop the nondivergen
terms, and setLy5Lx to obtain

I c5 ln@LxLx# ln@LyLy#2
1

2
ln2FLxLy

2my
G5

1

2
ln2@2myLyLx#

for the continuum contribution to the displacement fluctu
tions.

The discrete contribution is obtained by evaluating

I d5E
x* Lx

21

Lxx* dv
v

F~v !, ~B7!

where

F~v !5E
0

p

dwF 1

Av21w2p~w!
2

1

Av21w2G . ~B8!

In the definition ofF(v), we can take the lower limit to zero
since the smallw part of integral is well behaved. In contra
to the continuum term, the discrete term diverges logarith
cally with system size. To see this, we expandF(v) around
v50 and find F(v)'F(0)1av21O(v4), where F(0)
5 ln@4/p#, and a is a constant. ThusI d5 ln@4/p# ln@LxLx#
plus terms that do not diverge with system size. To make
argument of the ln term inI d match the ln2 term in I c , we
add and subtract the constant ln@4/p# ln@2myLy /Lx# to find

I d5 ln@4/p# ln@2myLyLx#. ~B9!

We then addI c and I d and find the following expression fo
the displacement fluctuations in the limitLz→` and Lx
;Ly :

^~uz
n!2&5 l u

2ln2@8Lx /x* #. ~B10!

APPENDIX C: CALCULATION OF g„1…
„na…

In this appendix, we calculate the divergent part of t
position correlation functiong(1)(na) in Eq. ~3.22!. We per-
form the qz integration, switch to dimensionless variable
and find

g(1)~na!52l u
2F E

x* Lx
21

Lxx* dt

t
Sn~ t !1Ān~Lx ,Lz!G , ~C1!

whereSn(t) was defined previously in Eq.~3.23!, and
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Ān~Lx ,Lz!52E
0

Lxx* dt

t E0

p

du
12cosnu

At21u2p~u!

3S 12
2

p
arctanF Lzz*

tAt21u2p~u!
G D . ~C2!

Note that the integral definingĀn(Lx ,Lz) does not have an
infrared divergence ast→0 (Lx→`), and thus it is a well-
defined number. In the final step, we isolate the lnLx diver-
gence in the first term of Eq.~C1! to find

g(1)~na!52l u
2Sn~0!ln@An~Lx ,Lz!Lx /x* #, ~C3!

where

An~Lx ,Lz!5exp@cn
(1)1cn

(2)~Lx!1cn
(3)~Lx ,Lz!# ~C4!

depends on the layer indexn and the ultraviolet cutoffs with

cn
(1)5E

0

1dt

t F Sn~ t !

Sn~0!
21G , ~C5!

cn
(2)~Lx!5E

1

Lxx* dt

t

Sn~ t !

Sn~0!
, ~C6!

cn
(3)~Lx ,Lz!5

Ān~Lx ,Lz!

Sn~0!
. ~C7!

Note thatAn(Lx ,Lz) is well defined in the limitLx,z→`.

APPENDIX D: CALCULATION g„2…
„r …

In this appendix, we evaluate the SC position correlat
function

g(2)~r !5
1

2
^@uz

0~r !2uz
0~0!#2& ~D1!

between two DNA strands located in layern50 and sepa-
rated byr in the xz plane. For general separations,g(2)(r )
cannot be expressed in closed form. The aim of this appe
is to calculateg(2)(r ) along the special directionsz50, x
@x* andx50, z@z* .

1. Large x, small z limit

The following expression forg(2)(x,0) is obtained by set-
ting z to zero in Eq.~3.16!:

g(2)~x,0!5TE d3q

~2p!3

12cos~qxx!

Bqz
21Kqx

41Kyqx
2qy

2p~qya!
.

~D2!

The first step in the derivation ofg(2)(x,0) is to perform the
integration overqz with Lz→`. Theqz integration yields

g(2)~x,0!5
T

2p2ABKy

I ~x,Lx!, ~D3!

where
n

ix

I ~x,Lx!5E
0

Lx
dqx

12cos~qxx!

qx
E

0

p/x* dqy

Aqx
21qy

2p~qyx* !
.

We then decomposeI (x,Lx)[I c(x,Lx)1I d(x,Lx) into con-
tinuum and discrete contributions, as we did previously
Appendix B, where

I c~x,Lx!5E
0

Lx
dqx

12cos~qxx!

qx
E

0

p/x* dqy

Aqx
21qy

2
,

I d~x,Lx!5E
0

Lx
dqx

12cos~qxx!

qx
E

0

p/x*

3dqyF 1

Aqx
21qy

2p~qyx* !
2

1

Aqx
21qy

2G .

Since theLx→` limit is well defined, we calculateI c(x)
[I c(x,`) and I d(x)[I d(x,`) and drop terms that depen
on the finite ultraviolet cutoff.

To calculate the continuum contribution, we first setqx
5uqy and thenv5qyx. These changes of variables yield

I c~x!5E
0

px/x* dv
v

K~v !, ~D4!

where

K~v !5E
0

`

du
12cos~uv !

uA11u2
. ~D5!

The strategy for calculating the ln2x term in I c(x) is to iso-
late the part ofK(v) that scales as lnv for largev. To this
end, we write

K~v !5E
0

1du

u
@12cos~uv !#1E

1

`du

u

12cos~uv !

A11u2

1E
0

1du

u
@12cos~uv !#F 1

A11u2
21G . ~D6!

It is obvious that only the first term has the correct scalin
the remaining terms inK(v) are then separated into con
stants and functions ofv that are well behaved either asv
→0 or v→`. This partitioning leads to

K~v !5 ln~Bv !1K̃~v !, ~D7!

whereB52eg, g is Euler’s constant, and

K̃~v !5E
v

`

du
cosu

u
2E

1

`du

u

cos~uv !

A11u2

2E
0

1

du
cos~uv !

u F 1

A11u2
21G ~D8!

scales as 1/v2 for largev.
We then insertK(v) into Eq. ~D4! and break the integra

over v into small- and large-v parts to obtain
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I c~x!5E
0

1dv
v

K~v !1E
1

px/x* dv
v

ln@Bv#1E
1

px/x* dv
v

K̃~v !.

~D9!

Next we evaluate the integral overv in the second term
collect constants, and find

I c~x!5
1

2
ln2@2egpx/x* #1Ax , ~D10!

where

Ax52
1

2
ln2@2eg#1E

0

1dv
v

K~v !1E
1

`dv
v

K̃~v !.

~D11!

The second and third terms inAx are finite sinceK(v) scales
asv2 for small v in the former, and there is phase cancel
tion from the cos(uv) factor at largev in the latter.

We will now calculate the discrete contribution
g(2)(x,0). The first step is to rewriteI d(x) in dimensionless
form:

I d~x!5E
0

Lxx* dv
v

@12cos~vx/x* !#F~v !, ~D12!

where F(v) was defined previously in Eq.~B8!. We next
break the integral overv into small- and large-v parts and
take thex@x* andLx→` limits to obtain

I d~x!5F~0!E
0

1dv
v

@12cos~vx/x* !#1E
1

`dv
v

F~v !

1E
0

1dv
v

@F~v !2F~0!#. ~D13!

Note that taking thex@x* limit removed the cos(vx/x* )
terms from the last two terms in Eq.~D13! due to phase
cancellations. It is again obvious that the first term sca
logarithmically withx/x* , and thus

I d~x!5 ln@4/p# lnFeg
x

x* G1Bx , ~D14!

where

Bx5E
0

1dv
v

@F~v !2F~0!#1E
1

`dv
v

F~v ! ~D15!

is a constant. The last step in the calculation ofg(x,0) is to
add the continuum and discrete terms,I c(x) and I d(x). The
final result is

g(2)~x,0!5 l u
2S ln2F8eg

x

x* G1CxD , ~D16!

where Cx52(Ax1Bx)2 ln2@4/p#22 ln@4/p# ln@2p#. Ax and
Bx are computed later in this appendix; see Eqs.~D34! and
~D35!. By using these equations, we eventually find thatCx
in Eq. ~D16! vanishes:Cx50.
-

s

2. Large z, small x limit

The calculation ofg(2)(0,z) is similar to the calculation of
g(2)(x,0). The expression forg(2)(0,z) is obtained by setting
x to zero in Eq.~3.16!. The first step in the calculation is t
perform the integration overqz with Lz→`, which yields

g(2)~0,z!5
T

2p2ABKy

I ~z,Lx!, ~D17!

where

I ~z,Lx!5E
0

Lxdqx

qx
E

0

p/x*
dqy

12e2zlqxAqx
2
1qy

2p(qyx* )

Aqx
21qy

2p~qyx* !
.

In what follows, we setLx→`, drop terms that depend o
the finite ultraviolet cutoff, and defineI (z)[I (z,`). The
second step is to change variables tou5qx /qy and v
5lzqy

2 , and decomposeI (z)[I c(z)1I d(z) into continuum
and discrete terms, where

I c~z!5
1

2E0

tdv
v E

0

`

du
12e2vuA11u2

uA11u2 , ~D18!

I d~z!5E
0

`dv
v

@F~v,0!2F~v,vz/z* !#, ~D19!

with t5p2z/z* , z* 5a2/my
2l,

F~v,t!5E
0

p

duFe2tAv21u2p(u)

Av21u2p~u!
2

e2tAv21u2

Av21u2 G , ~D20!

andF(v,0) is equivalent toF(v) defined in Eq.~B8!.
We first focus on the continuum contribution tog(2)(z,0).

The integral overv in I c(z) can be broken into small- an
large-v parts,

I c~z!5
1

2E0

1dv
v

J~v !1
1

2E1

p2z/z* dv
v

J~v !, ~D21!

where

J~v !5E
0

`

du
12e2vuA11u2

uA11u2 . ~D22!

The strategy is to extract the part ofJ(v) that scales as lnv
for large v. If J(v); ln v for large v, I c(z) will scale as
ln2@z/z* # as expected. Note thatJ(v) scales asv2 for smallv,
and thus the first term in Eq.~D21! is a finite constant. After
some algebra, we find

J~v !5 ln@Dv#1 J̃~v !, ~D23!

whereD52eg,

J̃~v !5E
A2v

`

du
e2u

u
2E

1

`

du
e2vuA11u2

uA11u2
2E

0

1

du
12F~u!

uA11u2

3e2vuA11u2
, ~D24!
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and

F~u!5
112u2

A11u2
. ~D25!

We can now insert the expression forJ(v) in Eq. ~D23! into
Eq. ~D21! and obtain the continuum contribution

I c~z!5
1

4
ln2F2egp2

z

z* G1Az , ~D26!

where

Az52
1

4
ln2@2eg#1

1

2E0

1dv
v

J~v !1
1

2E1

`dv
v

J̃~v !

~D27!

is a constant. Note thatJ̃(v) decays exponentially for larg
v, and thus the third term inAz is finite.

We now concentrate on the discrete contribution
g(2)(z,0). The integral overv in I d(z)[I d

(1)1I d
(2) can also be

broken into small- and large-v parts, where

I d
(1)5E

0

1dv
v

@F~v,0!2F~v,vz/z* !#, ~D28!

and I d
(2) is an identical expression except the limits on t

integral overv run from one to infinity. To isolate the lnz
term in I d

(1) , we change variables tot5vz/z* and take the
z@z* limit. In the largez limit, Eq. ~D28! becomes

I d
(1)5F~0,0!lnF z

z* G1B̄z ,1E
0

1dv
v

@F~v,0!2F~0,0!#,

~D29!

whereF(0,0)5 ln@4/p#, and

B̄z5E
0

1dt

t
@F~0,0!2F~0,t !#2E

1

`dt

t
F~0,t ! ~D30!

is a constant. The large-v contribution toI d ,

I d
(2)5E

1

`dv
v

F~v,0!, ~D31!

is simply a constant whenz@z* . We then collect the dis-
crete contributions, and find

I d~z!5I d
(1)1I d

(2)5 lnF 4

pG lnF z

z* G1Bz , ~D32!

whereBz5B̄z1Bx with Bx given by Eq.~D15!.
The last step in the calculation ofg(2)(0,z) is to addI c(z)

and I d(z). The final result is

g(2)~0,z!5 l u
2S 1

2
ln2F32eg

z

z* G1CzD , ~D33!

where Cz52(Az1Bz)22ln2@4/p#22ln@4/p# ln@2egp2#. Az
andBz are calculated later in this appendix@see Eqs.~D36!
and ~D37!#. By using these equations, we findCz5p2/8.
3. Calculation of Ax , Bx , Az , and Bz

In Secs. 1 and 2 of this appendix, we anticipated that
numerical constantsAx , Bx , Az , andBz have the values

Ax5
p2

24
, ~D34!

Bx52
p2

24
14ln2~2!2@ ln~2!#@ ln~p!#2

ln2~p!

2
,

~D35!

Az5
7p2

48
, ~D36!

Bz52
p2

12
16ln2~2!12g ln~2!2@ ln~2!#@ ln~p!#2g ln~p!

2 ln2~p!. ~D37!

In this section we outline calculations yielding Eqs.~D34!–
~D37!. We begin by deriving more explicit formulas fo
these constants. Thus, forAx , we obtain, by Eqs.~D6!, ~D8!,
and ~D11!,

Ax52
1

2
ln2~2eg!1Ax

(1)1Ax
(2)1gAx

(3) , ~D38!

with

Ax
(1)52E

0

1

dv ln~v !
12cos~v !

v
1E

1

`

dv ln~v !
cos~v !

v
,

~D39!

Ax
(2)5E

0

1du

u F 1

A11u2
21G ln~u!1E

1

`du

u

1

A11u2
ln~u!,

~D40!

and

Ax
(3)5E

0

1du

u F 1

A11u2
21G1E

1

`du

u

1

A11u2
. ~D41!

Likewise, for the constantAz , we obtain, by Eqs.~D22!,
~D24!, ~D25!, and~D27!,

Az52
1

4
ln2~2eg!1

1

2 FAz
(1)1

1

8
ln2~2!1

g

2
ln~2!G

1
1

2
@Az

(2)1gAz
(3)#, ~D42!

where

Az
(1)52E

0

1

dx ln~x!
12e2x

x
1E

1

`

dx ln~x!
e2x

x
,

~D43!
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Az
(2)5E

0

1

du
12F~u!

uA11u2
ln~uA11u2!

1E
1

`

du
1

uA11u2
ln~uA11u2!, ~D44!

Az
(3)5E

0

1

du
12F~u!

uA11u2
1E

1

`

du
1

uA11u2
, ~D45!

with F(u) defined in Eq.~D25!. We proceed to compute th
integrals in Eqs.~D38!–~D45!. Integrals Eqs.~D41! and
~D45! can be done by elementary integration methods, yie
ing

Ax
(3)5 ln~2!, Az

(3)5
ln~2!

2
. ~D46!

Other integrals are not elementary, and we outline their
culation in the following. Thus we compute the integralsAx

(1)

andAz
(1) first by showing that

Ax
(1)5Az

(1)2
p2

8
~D47!

and, next, by showing that

Az
(1)5

1

2 S d2G

dz2 D
z51

, ~D48!

whereG(z) signifies the gamma function.
To obtain Eq. ~D47!, consider the complex function

f (z)5e2zln(z)/z. In the complexz5x1 iy plane, f (z) is
analytic inside the contourC made of the following four
segments:C1 :@z5x;e,x,R#, C2 :@z5Reiu;0,u,p/2#,
C3 :@z5 iy ;R.y.0#, andC4 :@z5eeiu;p/2.u.0#. By ap-
plying the Cauchy residue theorem to the abovef (z) along
the contourC5C11C21C31C4 in the limit e→0 andR
→`, we directly obtain relation~D47! betweenAx

(1) and
Az

(1) . Next we demonstrate Eq.~D48! by differentiating the
standard integral representation of theG function. This yields

S dG

dzD
z51

5E
0

`

dx ln~x!e2x52g, ~D49!

S d2G

dz2 D
z51

5E
0

`

dx ln2~x!e2x. ~D50!

We then rewrite Eq.~D50! as

S d2G

dz2 D
z51

5E
0

1

dx~e2x21!ln2~x!1E
0

1

dx ln2~x!

1E
1

`

dxe2xln2~x!, ~D51!

and integrate by parts the first integral@by writing (e2x

21)dx5d(12e2x2x), etc.# as well as the last integral@by
writing e2xdx5d(2e2x), etc.#. After few elementary inte-
-

l-

grations, this yields our Eq.~D48!, which, combined with
Eq. ~D47!, yields values of the integralsAx

(1) and Az
(1) . To

complete this calculation we need also the value of the s
ond derivative ofG(z) at z51 that enters Eq.~D48!. To
compute it, we use a relation from the theory of theG func-
tion,

dG~z!

dz
5G~z!C~z!, ~D52!

with

C~z!52g1S 12
1

zD1S 1

2
2

1

z11D1S 1

3
2

1

z12D1•••;

~D53!

G(1)51, (dG/dz)z515C(1)52g. By differentiating Eq.
~D52!,

S d2G

dz2 D
z51

5S dG

dzD
z51

C~1!1G~1!S dC

dz D
z51

5g21S dC

dz D
z51

. ~D54!

The use of Eq.~D53! to computedC(z)/dz at z51 yields

S d2G

dz2 D
z51

5g2111
1

22
1

1

32
1

1

42
1•••5g21

p2

6
.

~D55!

By Eqs.~D55!, ~D47!, and~D48!, we finally obtain

Ax
(1)5

g2

2
2

p2

24
, Az

(1)5
g2

2
1

p2

12
. ~D56!

Next we proceed to compute the integralAx
(2) in Eq.

~D40!. For this purpose, consider the integrals

Ax
(2)~ t !5E

0

tdu

u F 1

A11u2
21G ln~u!1E

t

`du

u

1

A11u2
ln~u!,

~D57!

Ax
(3)~ t !5E

0

tdu

u F 1

A11u2
21G1E

t

`du

u

1

A11u2
.

~D58!

For t51, Ax
(2)(t51)5Ax

(2) is the desired integral, wherea
Ax

(3)(t51)5Ax
(3)5 ln(2) by Eq. ~D46!. Further, by Eqs.

~D57! and ~D58!, dAx
(2)(t)/dt52 ln(t)/t, anddAx

(3)(t)/dt5
21/t. By integrating these relations overt,

Ax
(2)5Ax

(2)~ t !1
ln2~ t !

2
, ~D59!

Ax
(3)5Ax

(3)~ t !1 ln~ t ! ~D60!

for any t.0. By Eqs.~D57!–~D60!, with t5e→0,
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Ax
(2)5 lim

e→0
F E

e

`du

u

1

A11u2
ln~u!1

ln2~e!

2 G , ~D61!

Ax
(3)5 lim

e→0
F E

e

`du

u

1

A11u2
1 ln~e!G . ~D62!

To proceed, it is useful to form the difference

D5Ax
(2)2

1

2
@Ax

(3)#2. ~D63!

Here, using Eqs.~D61! and ~D62!, we find

D5E
0

`

du
1

uA11u2E0

udv
v F12

1

A11v2G . ~D64!

The integral overv here can be done by changingv→t with
t5 ln@(A11v211)/2#. This reduces Eq.~D64! to

D5E
0

`

du
1

uA11u2
lnFA11v211

2 G . ~D65!

By changing variables viau→t with t5 ln@(A11u211)/2#,
we eventually obtainD in a form involving a well-known
integral,

D5
1

2E0

`

dt
t

et21
5

p2

12
. ~D66!

By Eqs.~D66!, ~D63!, and~D46!, we obtain

Ax
(2)5

p2

12
1

ln2~2!

2
. ~D67!

Equations~D38!, ~D46!, ~D56!, and ~D67! yield our final
result for the constantAx , anticipated in Eq.~D34!.

Next we compute the integralAz
(2) in Eq. ~D44!. For this

purpose, consider the integral

Az
(2)~ t !5E

0

t

du
12F~u!

uA11u2
ln~uA11u2!

1E
t

`

du
1

uA11u2
ln~uA11u2!. ~D68!

For t51, Az
(2)(t51)5Az

(2) is the desired integral. It is eas
to show, along the lines we used to derive Eqs.~D59! and
~D60!, that

Az
(2)5Az

(2)~ t !1
@ ln~ tA11t2!#2

2
2

@ lnA2#2

2
~D69!

for any t.0. Thus, by Eqs.~D68! and ~D69!, with t5e
→0,
Az
(2)5 lim

e→0
F E

e

`

du
1

uA11u2
ln~uA11u2!1

ln2~e!

2 G
2

ln2~2!

8
. ~D70!

Next, by Eqs.~D70! and ~D61!,

Az
(2)2Ax

(2)5E
0

`

du
1

uA11u2
ln~A11u2!2

ln2~2!

8
.

~D71!

By the change of variablesu→t, with u5Ae2t21, we find
Az

(2)2Ax
(2)5S11S22 ln2(2)/8, whereS1 andS2 are two well

known integrals, S15*0
`dtt/(et11)5p2/12, and S2

5*0
`dtt/(e2t21)5 1

4 *0
`dxx/(ex21)5 1

4 (p2/6). Thus

Az
(2)2Ax

(2)5
p2

8
2

ln2~2!

8
. ~D72!

By Eqs.~D72! and ~D67!,

Az
(2)5

5p2

24
1

3 ln2~2!

8
. ~D73!

Equations~D42!, ~D46!, ~D56!, and ~D73! yield our final
result for the constantAz anticipated in Eq.~D36!.

We now proceed to discuss calculations yielding the v
ues of the numerical constantsBx and Bz quoted in Eqs.
~D35! and ~D37!. For Bx , by ~D15! and ~B8!, we obtain

Bx5E
0

p

dwF ~Ax
(3)~ t !! t51/wAp(w)

wAp~w!
2

~Ax
(3)~ t !! t51/w

w G .

~D74!

By using Eq.~D60!, i.e., Ax
(3)(t)5Ax

(3)2 ln(t)5ln(2)2ln(t),
we find

Bx5F E
e

p

dw
ln~2!1 ln„wAp~w!…

wAp~w!

2E
e

p

dw
ln~2!1 ln~w!

w G
e→0

. ~D75!

Next, in the first integral above, we change fromw to z
5wAp(w)52 sin(w/2), whereas in the second integral w
change the variablew into z. After rearranging the expressio
thus obtained, we find

Bx5E
0

2

dzF 1

A12~z/2!2
21G ln~2!1 ln~z!

z

2E
2

p

dz
ln~2!1 ln~z!

z
. ~D76!

For convenience, we change variables viaz→x5z/2, and
thus obtain
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Bx5B(1)12 ln~2!B(2)2
ln2~p!

2
2@ ln~2!#@ ln~p!#

1
3 ln2~2!

2
, ~D77!

with

B(1)5E
0

1

dxF 1

A12x2
21G ln~x! ~D78!

and

B(2)5E
0

1

dxF 1

A12x2
21G . ~D79!

A similar formula can be derived for the constantBz5B̄z
1Bx introduced in Sec. D 2 of this Appendix. By Eqs.~D20!

and ~D30!!, we find, for B̄z ,

B̄z5F E
e

p

du

g1 ln~uAp~u!!

uAp~u!
2E

e

p

du
g1 ln~u!

u
G

e→0

.

~D80!

By treating Eq.~D80! in exactly the same way we treate
above Eq.~D75!, we eventually find

B̄z5B(1)1@ ln~2!1g#B(2)1
ln2~2!

2
1g ln~2!2

ln2~p!

2

2g ln~p!. ~D81!

To complete our calculation, we need the integralsB(1) and
B(2) in Eqs. ~D78! and ~D79!. B(2) @Eq. ~D79!# can be cal-
culated by elementary integration methods, yielding

B(2)5 ln~2!. ~D82!

On the other hand, the integralB(1) @Eq. ~D78!# is not el-
ementary. As detailed below, we find

B(1)52
p2

24
1

ln2~2!

2
. ~D83!

The values ofBx andBz5B̄z1Bx quoted in Eqs.~D35! and
~D37!, directly follow from Eqs.~D77!, ~D81!, ~D82!, and
~D83!. It remains to outline the calculation yielding the valu
of B(1) in Eq. ~D83!. It is obtained by relating the integra
B(1) @Eq. ~D78!# to the integralAx

(2) @Eq. ~D40!# computed in
Eq. ~D67!. We find that

B(1)52
p2

8
1Ax

(2) . ~D84!

To derive relation~D84!, we apply the Cauchy residue the
rem to the complex functionf (z)5 ln(z)/zA12z2 along the
same contour that has been used before to derive Eq.~D47!
@see the text following Eq.~D48!#. This yields the relation
E
e

1dx

x

1

A12x2
ln~x!52

p2

8
1E

e

`du

u

1

A11u2
ln~u!1f~e!,

~D85!

wheref(e)→0 ase→0. Equation~D85! is identical to

E
e

1dx

x F 1

A12x2
21G ln~x!52

p2

8
1E

e

`du

u

1

A11u2
ln~u!

1
ln2~e!

2
1f~e!. ~D86!

By recalling here Eq.~D61! and taking the limite→0 in Eq.
~D86!, we eventually obtain relation~D84! used to compute
B(1).

APPENDIX E: CALCULATION OF g„3…
„r, na…

In this appendix, we will outline the evaluation of Eq
~3.25! for g(3)(r ,na)[g(3)(x,z,na). We begin with expres-
sion ~3.17! for g(3)(r ,na). We assume the continuum lim
Lz→`, and integrate overqz , to obtain

g(3)~r ,na!52l u
2E

0

Lxx* dt

t E0

p

du
12cos~nu!

tAt21u2p~u!

3@12cos~ tx/x* !e2(tz/z* )At21u2p(u)#.

~E1!

This expression can now be used to evaluate various lim

1. xšx* and zÄ0

From Eq.~E1!, we have

g(3)~x,0,na!52l u
2E

0

Lxx* dt

t
Sn~ t !@12cos~ tx/x* !#,

~E2!

whereSn(t), defined in Eq.~3.23!, is proportional to 1/t for
t@1. Thus the integral in Eq.~E2! is convergent at larget,
and we can take the continuum limitLx→`. Thus we have

g(3)~x,0,na!52l u
2E

0

`dt

t
Sn~ t !@12cos~ tx/x* !#52l u

2E
0

1dt

t

3@12cos~ tx/x* !#Sn~ t !12l u
2E

1

`dt

t

3@12cos~ tx/x* !#Sn~ t ! ~E3!

52l u
2@ ln~x/x* !1g#Sn~0!12l u

2E
0

1dt

t
@12cos~ tx/x* !#

3@Sn~ t !2Sn~0!#12l u
2E

1

`dt

t
@12cos~ tx/x* !#Sn~ t !.

~E4!

The contributions from the cos(tx/x* ) terms in the integrals
in Eq. ~E4! vanish whenx/x* @1, leaving
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g(3)~x,0,na!52l u
2Sn~0!ln~Dnx/x* !, ~E5!

where

Dn5eg1cn
(1)

1cn
(2)(Lx5`), ~E6!

with cn
(1) andcn

(2)(Lx) given, respectively, by Eqs.~C5! and
~C6!.

2. xÄ0, zšz*

Again, we will simplify our discussion by taking the limi
Lx→` and integrating overqx in Eq. ~3.25! to obtain

g(3)~0,z,na!52l u
2E

0

`

dtE
0

p

du
12cos~nu!

tAt21u2p~u!

3@12e2(tz/z* )At21u2p(u)#. ~E7!

Changing variables viat5sAu2p(u), we obtain

g(3)~0,z,na!52l u
2E

0

p12cos~nu!

Au2p~u!
J@~z/z* !u2p~u!#,

~E8!

where J(v) is defined in Eq.~D22!. Next, using J(v)
5 ln(2eg)1J̃(v) @Eq. ~D23!#, we obtain

g(3)~0,z,na!52l u
2@ ln~z/z* !1g1 ln2#E

0

p

du
12cos~nu!

Au2p~u!

12l u
2E

0

p

du
12cos~nu!

Au2p~u!
ln@u2p~u!#

12l u
2E

0

p

du
12cos~nu!

Au2p~u!
J̃@~z/z* !u2p~u!#.

~E9!

In the limit z/z* →`, J̃@(z/z* )u2p(u)# tends to zero for all
u, and we obtain

g(3)~0,z,na!52l u
2Sn~0!ln~Enz/z* !, ~E10!

where

En52egexpF 1

Sn~0!
E

0

p

du
12cos~nu!

Au2p~u!
ln@u2p~u!#G .

~E11!

APPENDIX F: INTERPLANE CORRELATIONS WHEN
VuÅ0

In this appendix, we will derive Eq.~3.46! from expres-
sion ~3.41! for S(r ,na). We begin by looking at the linea
term in Vu in S(r ,a),
S~r ,a!5Vu/2TE d2r 1

3^e2 iq0uz
0(0)~eiq0[uz

0(r1)2uz
1(r1)]eiq0a]zuy

1(r1)1c.c.!

3eiq0uz
1(r )&SC ~F1!

5
Vu

2TE d2r 1^e
iq0[uz

1(r )2uz
1(r1)]eiq0[uz

0(r1)2uz
0(0)]

3eiq0a]zuy
1(r1)&SC1

Vu

2TE d2r 1^e
iq0[uz

1(r )1uz
1(r1)]

3eiq0[uz
0(r1)1uz

0(0)]eiq0a]zuy
1(r1)&SC, ~F2!

where the subscriptSC indicates that the averages are to
evaluated with respect to the sliding columnar Hamiltonia
H SC of Eq. ~2.19!. Since H SC is quadratic inuz

n(r ) and
uy

n(r ), the averages in this equation can be performed
actly, andS2(r ,a) can be expressed as an exponential
correlations functions ofuz

n(r ) and]zuy
n(r ). The second term

in Eq. ~F2! has terms in the exponential proportional to
2q0

2^@uz
n(r )#2& for n50 and 1, which diverge in thermody

namic limit and cause the exponential to vanish. Thus o
the first term of Eq.~F2! survives, and we have

S~r ,a!5
Vu

2TE d2r 1e2F(r1 ,r ), ~F3!

where

F~r1 ,r !5 1
2 q0

2^@ ũz
1~r ,r1!1ũz

0~r1,0!1a]zuy
1~r1!2#&

5g(2)~r2r1 ,0!1g(2)~r1 ,0!1g(2)~r ,a!1g(2)~0,a!

2g(2)~r2r1 ,a!2g(2)~r1 ,a!1 1
2 a2^@]zuy

1~r1!#2&

1a^]zuy
1~r1!@ ũz

1~r ,r1!2ũz
0~r1 ,0!#&; ~F4!

hereg(2)(r ,na) is defined in Eq.~3.18!, and

ũz
n~r ,r 8!5uz

n~r !2uz
n~r 8!. ~F5!

This expression is quite complex. However, it simplifies co
siderably if we setKy50 andBuh50. Theng(2)(r ,a)50,
and all cross terms inuz

n(r ) anduy
m(r 8) vanish. In this case

F~r1 ,r !5g(2)~r2r1!1g(2)~r1!1Wy , ~F6!

where g(2)(r )5g(2)(r ,0) @see Eq. ~3.18!#, and Wy

5q0
2a2^(]zuy

n)2&/2.
The generalization of Eqs.~F3! and ~F4! to n.1 is

straightforward. The leading contribution toS(r ,na) is

S~r ,na!5S Vu

2TD nE d2r 1•••d2r ne2F(r1 , . . . ,rn ,r ), ~F7!

where

F5
1

2 K S (
m50

n

ũz
m~rm ,rm11!1a (

m51

n

]zuy
m~rm!D 2L

SC

,

~F8!
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wherer050 andrn115r . This function can be expressed
terms of the reduced correlation functionsg(2)(r ,n) for
uz

n(r ) and correlation functions involving]zuy
n(r ). In gen-

eral, it will have terms connecting all pairs of layers, and
evaluation ofS(r ,na) is highly nontrivial.

We can obtain a useful approximation by settingKy50 to
eliminate allg(2)(r ,na) for nÞ0, and by settingBuh50 to
eliminate couplings betweenuz

n and uy
m . Even in this ap-

proximation, couplings between distant layers arise fr
^]zuy

n(r )]zuy
m(r 8)&. This function, however, dies off rapidly

with n2m, and we will set it equal to zero whennÞm. @In
another publication@14#, we use a variational procedure
calculateS(r ,na). The form ofS(r ,na) evaluated with this
procedure is very similar to that obtained using the ab
approximations.# With these approximations,

F~r1 , . . . ,rn ,r !5q0
2 (

m50

n

g(2)~rm2rm11!1nWy ~F9!

and

S~r ,na!5
Ṽun

2T E d2r 1•••d2r nS2~r1!

3S2~r12r2!•••S2~rn2r !, ~F10!

where

S2~r !5^eiq0[uz
n(r )2uz

n(0)]& ~F11!

is the in-plane density correlation function, and where

Ṽu5Vue2Wy. ~F12!

Fourier transforming this equation, we obtain Eq.~3.46! in
the text.

APPENDIX G: INTERACTION ENERGY BETWEEN EDGE
DISLOCATIONS

In this appendix, we evaluate the interaction ene
E(r ,na) between two dislocations with separationx
5(r ,na) in the limits x@x* , z50 and z@z* , x50. To
obtain thex@x* , z50 limit, we must evaluate
ce

.

.

e

e

e

y

En~x!52E
0

Lxx* dt

t E0

p

duAt21u2p~u!

3cos@nu#~12cos@ tx/x* # !. ~G1!

We isolate the lnx divergence by adding and subtractin
Au2p(u) under theu integral. This procedure yields

En~x!52Jnln@Cn
x~Lx!uxu/x* # ~G2!

for x@x* . In the above expression,Cn
x(Lx)5egBn(Lx) with

Bn(Lx)5Lxx* eB̄n(Lx),

B̄n~Lx!5E
0

Lxx* dt

t FJn~ t !

Jn
21G , ~G3!

and

Jn~ t !5E
0

p

duAt21u2p~u!cosnu. ~G4!

The z@z* , x50 limit is obtained in a similar way from

En~z!52E
0

Lxx* dt

t E0

p

duAt21u2p~u!cos@nu#

3S 12expF2
z

z*
tAt21u2p~u!G D . ~G5!

We find that

En~z!52Jnln@Cn
z~Lx!uzu/z* # ~G6!

scales logarithmically for z@z* , where Cn
z(Lx)

5Bn(Lx)e
C̄n

z(Lx),

C̄n
z5E

0

1

dyF12Fn~y!

y G2E
1

`

dy
Fn~y!

y
~G7!

and

Fn~y!5
1

Jn
E

0

p

du cos~nu!Au2p~u!exp@2yAu2p~u!#.

Note thatCn
x,z(Lx) diverge withLx , and thusEn(r ) does

not have a well-definedLx→` limit.
M.

Pra-
th,

ett.
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